Two new binary codes obtained by shortening a generalized concatenated code
The authors construct a (75,13,30) code and a (75,11,32) code. The minimum distances of these codes are one larger than the largest known (T. Verhoeff 1987) minimum distances of codes with the same length and dimension. As a (75,11,33) code does not exist, the (75,11,32) code is, in a sense, optimal...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 1991-11, Vol.37 (6), p.1705 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The authors construct a (75,13,30) code and a (75,11,32) code. The minimum distances of these codes are one larger than the largest known (T. Verhoeff 1987) minimum distances of codes with the same length and dimension. As a (75,11,33) code does not exist, the (75,11,32) code is, in a sense, optimal. Both codes are obtained by judiciously shortening a (80,14,32) code that is obtained as a generalized concatenated code.< > |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/18.104337 |