Astrobee ISS Free-Flyer Datasets for Space Intra-Vehicular Robot Navigation Research
We present the first annotated benchmark datasets for evaluating free-flyer visual-inertial localization and mapping algorithms in a zero-g spacecraft interior. The Astrobee free-flying robots that operate inside the International Space Station (ISS) collected the datasets. Space intra-vehicular fre...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2024-04, Vol.9 (4), p.1-8 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present the first annotated benchmark datasets for evaluating free-flyer visual-inertial localization and mapping algorithms in a zero-g spacecraft interior. The Astrobee free-flying robots that operate inside the International Space Station (ISS) collected the datasets. Space intra-vehicular free-flyers face unique localization challenges: their IMU does not provide a gravity vector, their attitude is fully arbitrary, and they operate in a dynamic, cluttered environment. We extensively evaluate state-of-the-art visual navigation algorithms on these challenging Astrobee datasets, showing superior performance of classical geometry-based methods over recent data-driven approaches. The datasets include monocular images and IMU measurements, with multiple sequences performing a variety of maneuvers and covering four ISS modules. The sensor data is spatio-temporally aligned, and extrinsic/intrinsic calibrations, ground-truth 6-DoF camera poses, and detailed 3D CAD models are included to support evaluation. The datasets are available at: https://astrobee-iss-dataset.github.io/ . |
---|---|
ISSN: | 2377-3766 2377-3766 |
DOI: | 10.1109/LRA.2024.3364834 |