Enhanced Pseudo-Label Generation With Self-Supervised Training for Weakly- Supervised Semantic Segmentation
Due to the high cost of pixel-level labels required for fully-supervised semantic segmentation, weakly-supervised segmentation has emerged as a more viable option recently. Existing weakly-supervised methods tried to generate pseudo-labels without pixel-level labels for semantic segmentation, but a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2024-08, Vol.34 (8), p.7017-7028 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to the high cost of pixel-level labels required for fully-supervised semantic segmentation, weakly-supervised segmentation has emerged as a more viable option recently. Existing weakly-supervised methods tried to generate pseudo-labels without pixel-level labels for semantic segmentation, but a common problem is that the generated pseudo-labels contain insufficient semantic information, resulting in poor accuracy. To address this challenge, a novel method is proposed, which generates class activation/attention maps (CAMs) containing sufficient semantic information as pseudo-labels for the semantic segmentation training without pixel-level labels. In this method, the attention-transfer module is designed to preserve salient regions on CAMs while avoiding the suppression of inconspicuous regions of the targets, which results in the generation of pseudo-labels with sufficient semantic information. A pixel relevance focused-unfocused module has also been developed for better integrating contextual information, with both attention mechanisms employed to extract focused relevant pixels and multi-scale atrous convolution employed to expand receptive field for establishing distant pixel connections. The proposed method has been experimentally demonstrated to achieve competitive performance in weakly-supervised segmentation, and even outperforms many saliency-joined methods. |
---|---|
ISSN: | 1051-8215 1558-2205 |
DOI: | 10.1109/TCSVT.2024.3364764 |