400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes

The 400-nm In/sub 0.05/Ga/sub 0.95/N-GaN MQW light-emitting diode (LED) structure and In/sub 0.05/Ga/sub 0.95/N-Al/sub 0.1/Ga/sub 0.9/N LED structure were both prepared by organometallic vapor phase epitaxy. It was found that the use of Al/sub 0.1/Ga/sub 0.9/N as the material for barrier layers woul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in quantum electronics 2002-07, Vol.8 (4), p.744-748
Hauptverfasser: Chang, S.J., Kuo, C.H., Su, Y.K., Wu, L.W., Sheu, J.K., Wen, T.C., Lai, W.C., Chen, J.R., Tsai, J.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 748
container_issue 4
container_start_page 744
container_title IEEE journal of selected topics in quantum electronics
container_volume 8
creator Chang, S.J.
Kuo, C.H.
Su, Y.K.
Wu, L.W.
Sheu, J.K.
Wen, T.C.
Lai, W.C.
Chen, J.R.
Tsai, J.M.
description The 400-nm In/sub 0.05/Ga/sub 0.95/N-GaN MQW light-emitting diode (LED) structure and In/sub 0.05/Ga/sub 0.95/N-Al/sub 0.1/Ga/sub 0.9/N LED structure were both prepared by organometallic vapor phase epitaxy. It was found that the use of Al/sub 0.1/Ga/sub 0.9/N as the material for barrier layers would not degrade crystal quality of the epitaxial layers. It was also found that the 20-mA electroluminescence intensity of InGaN-AlGaN multiquantum well (MQW) LED was two times larger than that of the InGaN-GaN MQW LED. The larger maximum output intensity and the fact that maximum output intensity occurred at larger injection current suggest that AlGaN barrier layers can provide a better carrier confinement and effectively reduce leakage current.
doi_str_mv 10.1109/JSTQE.2002.801677
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1039466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1039466</ieee_id><sourcerecordid>907951010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-b77afc75fcf56846940748c94135f22d5649c4e4b0985ddf494188d42b7b9d1d3</originalsourceid><addsrcrecordid>eNqNkU1Lw0AQhoMoWKs_QLwED3pKnd3Mfh1LqW2lKGIFb0ua3dSUfLTZBPHfu7U9iAfxMMy8zDPDDG8QXBIYEALq7uFl8TweUAA6kEC4EEdBjzAmI2RIj30NQkSUw9tpcObcGgAkSugFUwSIqjKcVZPkMfIRJpU5qGGx02VXtPm2S6q2K8MPWxRhka_e28iWedvm1So0eW2sOw9OsqRw9uKQ-8Hr_Xgxmkbzp8lsNJxHaSyxjZZCJFkqWJZmjEvkCkGgTBWSmGWUGsZRpWhxCUoyYzL0HSkN0qVYKkNM3A9u93s3Tb3trGt1mbvUn5VUtu6cViAUI0DAkzd_klRyJmKG_wAJMn-tB69_geu6ayr_rlaKSsFjIB4ieyhtaucam-lNk5dJ86kJ6J1X-tsrvfNK773yM1f7mdxa-4OPFXIefwGw04yM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>992876301</pqid></control><display><type>article</type><title>400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes</title><source>IEEE Electronic Library (IEL)</source><creator>Chang, S.J. ; Kuo, C.H. ; Su, Y.K. ; Wu, L.W. ; Sheu, J.K. ; Wen, T.C. ; Lai, W.C. ; Chen, J.R. ; Tsai, J.M.</creator><creatorcontrib>Chang, S.J. ; Kuo, C.H. ; Su, Y.K. ; Wu, L.W. ; Sheu, J.K. ; Wen, T.C. ; Lai, W.C. ; Chen, J.R. ; Tsai, J.M.</creatorcontrib><description>The 400-nm In/sub 0.05/Ga/sub 0.95/N-GaN MQW light-emitting diode (LED) structure and In/sub 0.05/Ga/sub 0.95/N-Al/sub 0.1/Ga/sub 0.9/N LED structure were both prepared by organometallic vapor phase epitaxy. It was found that the use of Al/sub 0.1/Ga/sub 0.9/N as the material for barrier layers would not degrade crystal quality of the epitaxial layers. It was also found that the 20-mA electroluminescence intensity of InGaN-AlGaN multiquantum well (MQW) LED was two times larger than that of the InGaN-GaN MQW LED. The larger maximum output intensity and the fact that maximum output intensity occurred at larger injection current suggest that AlGaN barrier layers can provide a better carrier confinement and effectively reduce leakage current.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/JSTQE.2002.801677</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum gallium nitride ; Barrier layers ; Carrier confinement ; Crystalline materials ; Crystals ; Current carriers ; Degradation ; Electroluminescence ; Epitaxial growth ; Epitaxial layers ; Injection current ; Leakage current ; Light emitting diodes ; Quantum well devices ; Vapor phase epitaxy</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2002-07, Vol.8 (4), p.744-748</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-b77afc75fcf56846940748c94135f22d5649c4e4b0985ddf494188d42b7b9d1d3</citedby><cites>FETCH-LOGICAL-c384t-b77afc75fcf56846940748c94135f22d5649c4e4b0985ddf494188d42b7b9d1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1039466$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1039466$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chang, S.J.</creatorcontrib><creatorcontrib>Kuo, C.H.</creatorcontrib><creatorcontrib>Su, Y.K.</creatorcontrib><creatorcontrib>Wu, L.W.</creatorcontrib><creatorcontrib>Sheu, J.K.</creatorcontrib><creatorcontrib>Wen, T.C.</creatorcontrib><creatorcontrib>Lai, W.C.</creatorcontrib><creatorcontrib>Chen, J.R.</creatorcontrib><creatorcontrib>Tsai, J.M.</creatorcontrib><title>400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>The 400-nm In/sub 0.05/Ga/sub 0.95/N-GaN MQW light-emitting diode (LED) structure and In/sub 0.05/Ga/sub 0.95/N-Al/sub 0.1/Ga/sub 0.9/N LED structure were both prepared by organometallic vapor phase epitaxy. It was found that the use of Al/sub 0.1/Ga/sub 0.9/N as the material for barrier layers would not degrade crystal quality of the epitaxial layers. It was also found that the 20-mA electroluminescence intensity of InGaN-AlGaN multiquantum well (MQW) LED was two times larger than that of the InGaN-GaN MQW LED. The larger maximum output intensity and the fact that maximum output intensity occurred at larger injection current suggest that AlGaN barrier layers can provide a better carrier confinement and effectively reduce leakage current.</description><subject>Aluminum gallium nitride</subject><subject>Barrier layers</subject><subject>Carrier confinement</subject><subject>Crystalline materials</subject><subject>Crystals</subject><subject>Current carriers</subject><subject>Degradation</subject><subject>Electroluminescence</subject><subject>Epitaxial growth</subject><subject>Epitaxial layers</subject><subject>Injection current</subject><subject>Leakage current</subject><subject>Light emitting diodes</subject><subject>Quantum well devices</subject><subject>Vapor phase epitaxy</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkU1Lw0AQhoMoWKs_QLwED3pKnd3Mfh1LqW2lKGIFb0ua3dSUfLTZBPHfu7U9iAfxMMy8zDPDDG8QXBIYEALq7uFl8TweUAA6kEC4EEdBjzAmI2RIj30NQkSUw9tpcObcGgAkSugFUwSIqjKcVZPkMfIRJpU5qGGx02VXtPm2S6q2K8MPWxRhka_e28iWedvm1So0eW2sOw9OsqRw9uKQ-8Hr_Xgxmkbzp8lsNJxHaSyxjZZCJFkqWJZmjEvkCkGgTBWSmGWUGsZRpWhxCUoyYzL0HSkN0qVYKkNM3A9u93s3Tb3trGt1mbvUn5VUtu6cViAUI0DAkzd_klRyJmKG_wAJMn-tB69_geu6ayr_rlaKSsFjIB4ieyhtaucam-lNk5dJ86kJ6J1X-tsrvfNK773yM1f7mdxa-4OPFXIefwGw04yM</recordid><startdate>20020701</startdate><enddate>20020701</enddate><creator>Chang, S.J.</creator><creator>Kuo, C.H.</creator><creator>Su, Y.K.</creator><creator>Wu, L.W.</creator><creator>Sheu, J.K.</creator><creator>Wen, T.C.</creator><creator>Lai, W.C.</creator><creator>Chen, J.R.</creator><creator>Tsai, J.M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7QF</scope><scope>8BQ</scope><scope>JG9</scope><scope>7QQ</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20020701</creationdate><title>400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes</title><author>Chang, S.J. ; Kuo, C.H. ; Su, Y.K. ; Wu, L.W. ; Sheu, J.K. ; Wen, T.C. ; Lai, W.C. ; Chen, J.R. ; Tsai, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-b77afc75fcf56846940748c94135f22d5649c4e4b0985ddf494188d42b7b9d1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Aluminum gallium nitride</topic><topic>Barrier layers</topic><topic>Carrier confinement</topic><topic>Crystalline materials</topic><topic>Crystals</topic><topic>Current carriers</topic><topic>Degradation</topic><topic>Electroluminescence</topic><topic>Epitaxial growth</topic><topic>Epitaxial layers</topic><topic>Injection current</topic><topic>Leakage current</topic><topic>Light emitting diodes</topic><topic>Quantum well devices</topic><topic>Vapor phase epitaxy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, S.J.</creatorcontrib><creatorcontrib>Kuo, C.H.</creatorcontrib><creatorcontrib>Su, Y.K.</creatorcontrib><creatorcontrib>Wu, L.W.</creatorcontrib><creatorcontrib>Sheu, J.K.</creatorcontrib><creatorcontrib>Wen, T.C.</creatorcontrib><creatorcontrib>Lai, W.C.</creatorcontrib><creatorcontrib>Chen, J.R.</creatorcontrib><creatorcontrib>Tsai, J.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Ceramic Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chang, S.J.</au><au>Kuo, C.H.</au><au>Su, Y.K.</au><au>Wu, L.W.</au><au>Sheu, J.K.</au><au>Wen, T.C.</au><au>Lai, W.C.</au><au>Chen, J.R.</au><au>Tsai, J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2002-07-01</date><risdate>2002</risdate><volume>8</volume><issue>4</issue><spage>744</spage><epage>748</epage><pages>744-748</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>The 400-nm In/sub 0.05/Ga/sub 0.95/N-GaN MQW light-emitting diode (LED) structure and In/sub 0.05/Ga/sub 0.95/N-Al/sub 0.1/Ga/sub 0.9/N LED structure were both prepared by organometallic vapor phase epitaxy. It was found that the use of Al/sub 0.1/Ga/sub 0.9/N as the material for barrier layers would not degrade crystal quality of the epitaxial layers. It was also found that the 20-mA electroluminescence intensity of InGaN-AlGaN multiquantum well (MQW) LED was two times larger than that of the InGaN-GaN MQW LED. The larger maximum output intensity and the fact that maximum output intensity occurred at larger injection current suggest that AlGaN barrier layers can provide a better carrier confinement and effectively reduce leakage current.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTQE.2002.801677</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-260X
ispartof IEEE journal of selected topics in quantum electronics, 2002-07, Vol.8 (4), p.744-748
issn 1077-260X
1558-4542
language eng
recordid cdi_ieee_primary_1039466
source IEEE Electronic Library (IEL)
subjects Aluminum gallium nitride
Barrier layers
Carrier confinement
Crystalline materials
Crystals
Current carriers
Degradation
Electroluminescence
Epitaxial growth
Epitaxial layers
Injection current
Leakage current
Light emitting diodes
Quantum well devices
Vapor phase epitaxy
title 400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A24%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=400-nm%20InGaN-GaN%20and%20InGaN-AlGaN%20multiquantum%20well%20light-emitting%20diodes&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Chang,%20S.J.&rft.date=2002-07-01&rft.volume=8&rft.issue=4&rft.spage=744&rft.epage=748&rft.pages=744-748&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/JSTQE.2002.801677&rft_dat=%3Cproquest_RIE%3E907951010%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=992876301&rft_id=info:pmid/&rft_ieee_id=1039466&rfr_iscdi=true