Potential anomaly separation using genetically trained multi-level cellular neural networks

In this paper, multi-level genetic cellular neural networks (ML-GCNN) are applied to the geophysical problem of potential anomaly separation and satisfactory results are obtained, compared to classical deterministic approaches. ML-GCNN is a stochastic image processing technique which is based on tem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bilgili, E., Nucan, O., Muhittin Albora, A., Cem Goknar, I.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!