Potential anomaly separation using genetically trained multi-level cellular neural networks
In this paper, multi-level genetic cellular neural networks (ML-GCNN) are applied to the geophysical problem of potential anomaly separation and satisfactory results are obtained, compared to classical deterministic approaches. ML-GCNN is a stochastic image processing technique which is based on tem...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!