Potential anomaly separation using genetically trained multi-level cellular neural networks

In this paper, multi-level genetic cellular neural networks (ML-GCNN) are applied to the geophysical problem of potential anomaly separation and satisfactory results are obtained, compared to classical deterministic approaches. ML-GCNN is a stochastic image processing technique which is based on tem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bilgili, E., Nucan, O., Muhittin Albora, A., Cem Goknar, I.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, multi-level genetic cellular neural networks (ML-GCNN) are applied to the geophysical problem of potential anomaly separation and satisfactory results are obtained, compared to classical deterministic approaches. ML-GCNN is a stochastic image processing technique which is based on template optimisation using neighbourhood relationships of the pixels. The residual anomaly separation used in location decisions is one of the main problems in geophysics. The method proposed here is used in evaluating the Dumluca iron ore region of Turkey.
DOI:10.1109/CNNA.2002.1035075