GPR-GAN: A Ground Penetrating Radar Data Generative Adversarial Network

Deep learning has gained traction in ground-penetrating radar (GPR) tasks. However, obtaining sufficient training data presents a significant challenge. We introduce a structure-adaptive GPR-GAN to generate GPR defect data. GPR-GAN employs Double Normalization for stabilizing parameters and convolut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024-01, Vol.62, p.1-1
Hauptverfasser: Xiong, Hongqiang, Li, Jing, Li, Zhilian, Zhang, Zhiyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deep learning has gained traction in ground-penetrating radar (GPR) tasks. However, obtaining sufficient training data presents a significant challenge. We introduce a structure-adaptive GPR-GAN to generate GPR defect data. GPR-GAN employs Double Normalization for stabilizing parameters and convolution outputs, an adaptive discriminator augmentation (ADA) module for small dataset training stability, and a modified self-attention (MSA) module to generate GPR defects with complex features. We evaluated the performance of GPR-GAN using three datasets in conjunction with three state-of-the-art detection networks (FasterRCNN, SSD, and YOLOv5). Our results reveal that GPR-GAN exhibits strong generalization skills, adeptly adapting to GPR data generation tasks that encompasses a variety of targets, frequencies, and equipment. GPR-GAN generated data increased the F1 score for void recognition in simulation data by at least 5.27%, improved the average F1 score for highway pavement defect detection by at least 7.68%, and enhanced the average F1 score for railway subgrade defect detection by at least 9.22%. GPR-GAN offers a powerful data support tool for deep learning research in GPR.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2023.3337172