Torque-sensing Soft Bellows Actuator for Multi-fingered Hands Taking Bellow's Buckling into Consideration

Soft multi-fingered robotic hands are safe in human environments and can perform human-like behaviors. However, structural complexities and nonlinearities in soft actuators complicate torque sensing, a critical function for dexterous object manipulation. This study introduces a torque-sensing finger...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Higashi, Kazuki, Koyama, Keisuke, Ozawa, Ryuta, Nagata, Kazuyuki, Kiyokawa, Takuya, Wan, Weiwei, Harada, Kensuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soft multi-fingered robotic hands are safe in human environments and can perform human-like behaviors. However, structural complexities and nonlinearities in soft actuators complicate torque sensing, a critical function for dexterous object manipulation. This study introduces a torque-sensing finger joint mechanism using a soft actuator composed of water-powered hydraulic bellows. Two real-time torque estimation methods are proposed, developed, and validated specifically for cases in which buckling occurs in the bellows, a situation that typically presents significant estimation challenges. The buckling spring model for torque estimation, explicitly considering the buckling effect, is a linear model that considers two elastic forces for the pressure and external force. The multi-layer perceptron model for torque estimation considers the nonlinearity of the actuator. The experimental results show that both methods can estimate the torque in real-time with high accuracy. The torque control for grasping fragile objects has also been examined in real-world scenarios. The findings indicate that, compared to the approach without torque control, successful and safe manipulation of the target objects is accomplished without causing detrimental deformation.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2023.3333385