A hybrid large vocabulary handwritten word recognition system using neural networks with hidden Markov models
We present a hybrid recognition system that integrates hidden Markov models (HMM) with neural networks (NN) in a probabilistic framework. The input data is processed first by a lexicon-driven word recognizer based on HMMs to generate a list of the candidate N-best-scoring word hypotheses as well as...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a hybrid recognition system that integrates hidden Markov models (HMM) with neural networks (NN) in a probabilistic framework. The input data is processed first by a lexicon-driven word recognizer based on HMMs to generate a list of the candidate N-best-scoring word hypotheses as well as the segmentation of such word hypotheses into characters. An NN classifier is used to generate a score for each segmented character and in the end, the scores from the HMM and the NN classifiers are combined to optimize performance. Experimental results show that for an 80,000-word vocabulary, the hybrid HMM/NN system improves by about 10% the word recognition rate over the HMM system alone. |
---|---|
DOI: | 10.1109/IWFHR.2002.1030893 |