BiLSTM and SqueezeNet With Transfer Learning for EEG Motor Imagery Classification: Validation With Own Dataset

Transfer Learning (TL) is a methodology that allows the re-train of a Machine Learning (ML) algorithm (like Neural Networks or NN's) for a new task with the advantage of the previous training acquired knowledge; with this methodology, it is possible to train NNs for a new task even if the data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023, Vol.11, p.136422-136436
Hauptverfasser: Lazcano-Herrera, Alicia Guadalupe, Fuentes-Aguilar, Rita Q., Ramirez-Morales, Adrian, Alfaro-Ponce, Mariel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transfer Learning (TL) is a methodology that allows the re-train of a Machine Learning (ML) algorithm (like Neural Networks or NN's) for a new task with the advantage of the previous training acquired knowledge; with this methodology, it is possible to train NNs for a new task even if the data is scarce. The present study uses this approach to train NNs to classify Electroencephalography (EEG) signals that include Movement/Imagery (MI), first with a publicly available data set and then using it to validate the training process of a small dataset of acquired data. The first part of the article describes the methodology for acquiring EEG signals that imitated the information found in the publicly available dataset Physionet Motor/Imagery. The second part compares the training process for NNs. The first NN is a Bidirectional Long-Short Term Memory (BiLSTM) trained from scratch with the Physionet dataset, and the second NN is a CNN called SqueezeNet trained following the TL method with the small acquired dataset, reaching an accuracy of 91.25% in the BiLSTM with the scratch method and an accuracy of 92.33% with the transfer learning method for the EEG MI signal classification.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2023.3328254