BiLSTM and SqueezeNet With Transfer Learning for EEG Motor Imagery Classification: Validation With Own Dataset
Transfer Learning (TL) is a methodology that allows the re-train of a Machine Learning (ML) algorithm (like Neural Networks or NN's) for a new task with the advantage of the previous training acquired knowledge; with this methodology, it is possible to train NNs for a new task even if the data...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023, Vol.11, p.136422-136436 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Transfer Learning (TL) is a methodology that allows the re-train of a Machine Learning (ML) algorithm (like Neural Networks or NN's) for a new task with the advantage of the previous training acquired knowledge; with this methodology, it is possible to train NNs for a new task even if the data is scarce. The present study uses this approach to train NNs to classify Electroencephalography (EEG) signals that include Movement/Imagery (MI), first with a publicly available data set and then using it to validate the training process of a small dataset of acquired data. The first part of the article describes the methodology for acquiring EEG signals that imitated the information found in the publicly available dataset Physionet Motor/Imagery. The second part compares the training process for NNs. The first NN is a Bidirectional Long-Short Term Memory (BiLSTM) trained from scratch with the Physionet dataset, and the second NN is a CNN called SqueezeNet trained following the TL method with the small acquired dataset, reaching an accuracy of 91.25% in the BiLSTM with the scratch method and an accuracy of 92.33% with the transfer learning method for the EEG MI signal classification. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2023.3328254 |