Inverse Image Frequency for Long-tailed Image Recognition

The long-tailed distribution is a common phenomenon in the real world. Extracted large scale image datasets inevitably demonstrate the long-tailed property and models trained with imbalanced data can obtain high performance for the over-represented categories, but struggle for the under-represented...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2023-01, Vol.32, p.1-1
Hauptverfasser: Alexandridis, Konstantinos Panagiotis, Luo, Shan, Nguyen, Anh, Deng, Jiankang, Zafeiriou, Stefanos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on image processing
container_volume 32
creator Alexandridis, Konstantinos Panagiotis
Luo, Shan
Nguyen, Anh
Deng, Jiankang
Zafeiriou, Stefanos
description The long-tailed distribution is a common phenomenon in the real world. Extracted large scale image datasets inevitably demonstrate the long-tailed property and models trained with imbalanced data can obtain high performance for the over-represented categories, but struggle for the under-represented categories, leading to biased predictions and performance degradation. To address this challenge, we propose a novel de-biasing method named Inverse Image Frequency (IIF) . IIF is a multiplicative margin adjustment transformation of the logits in the classification layer of a convolutional neural network. Our method achieves stronger performance than similar works and it is especially useful for downstream tasks such as long-tailed instance segmentation as it produces fewer false positive detections. Our extensive experiments show that IIF surpasses the state of the art on many long-tailed benchmarks such as ImageNet-LT, CIFAR-LT, Places-LT and LVIS, reaching 55.8% top-1 accuracy with ResNet50 on ImageNet-LT and 26.3% segmentation AP with MaskRCNN ResNet50 on LVIS. Code available at https://github.com/kostas1515/iif.
doi_str_mv 10.1109/TIP.2023.3321461
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10284731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10284731</ieee_id><sourcerecordid>2881524541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-12dcfa48d3aa1c6e836bcbe91f16862bde786298e2ec28b78702dbeb840bd343</originalsourceid><addsrcrecordid>eNpdkEFLAzEQRoMotlbvHjwUvHjZmkmySfYoxepCQZHeQzY7W7ZsNzXZCv33prQH8fQNzPuG4RFyD3QGQIvnVfk5Y5TxGecMhIQLMoZCQEapYJdpprnKFIhiRG5i3FAKIgd5TUZcaSY4yDEpyv4HQ8RpubVrnC4Cfu-xd4dp48N06ft1Nti2w_q8_0Ln1307tL6_JVeN7SLenXNCVovX1fw9W368lfOXZeaY0kMGrHaNFbrm1oKTqLmsXIUFNCC1ZFWNKkWhkaFjulJaUVZXWGlBq5oLPiFPp7O74NNrcTDbNjrsOtuj30fDtFJcU5BFQh__oRu_D316LlEaciZyAYmiJ8oFH2PAxuxCu7XhYICao1WTrJqjVXO2mioPp0qLiH9wpoXiwH8BBqZv3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881524541</pqid></control><display><type>article</type><title>Inverse Image Frequency for Long-tailed Image Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Alexandridis, Konstantinos Panagiotis ; Luo, Shan ; Nguyen, Anh ; Deng, Jiankang ; Zafeiriou, Stefanos</creator><creatorcontrib>Alexandridis, Konstantinos Panagiotis ; Luo, Shan ; Nguyen, Anh ; Deng, Jiankang ; Zafeiriou, Stefanos</creatorcontrib><description>The long-tailed distribution is a common phenomenon in the real world. Extracted large scale image datasets inevitably demonstrate the long-tailed property and models trained with imbalanced data can obtain high performance for the over-represented categories, but struggle for the under-represented categories, leading to biased predictions and performance degradation. To address this challenge, we propose a novel de-biasing method named Inverse Image Frequency (IIF) . IIF is a multiplicative margin adjustment transformation of the logits in the classification layer of a convolutional neural network. Our method achieves stronger performance than similar works and it is especially useful for downstream tasks such as long-tailed instance segmentation as it produces fewer false positive detections. Our extensive experiments show that IIF surpasses the state of the art on many long-tailed benchmarks such as ImageNet-LT, CIFAR-LT, Places-LT and LVIS, reaching 55.8% top-1 accuracy with ResNet50 on ImageNet-LT and 26.3% segmentation AP with MaskRCNN ResNet50 on LVIS. Code available at https://github.com/kostas1515/iif.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2023.3321461</identifier><identifier>PMID: 37824316</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Additives ; Artificial neural networks ; Head ; image classification ; Image recognition ; Image segmentation ; instance segmentation ; Long tail ; margin adjustment ; Object detection ; Performance degradation ; Tail ; Task analysis ; Training</subject><ispartof>IEEE transactions on image processing, 2023-01, Vol.32, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c278t-12dcfa48d3aa1c6e836bcbe91f16862bde786298e2ec28b78702dbeb840bd343</cites><orcidid>0000-0003-4760-0372 ; 0000-0002-3709-6216 ; 0000-0002-2622-8615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10284731$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10284731$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alexandridis, Konstantinos Panagiotis</creatorcontrib><creatorcontrib>Luo, Shan</creatorcontrib><creatorcontrib>Nguyen, Anh</creatorcontrib><creatorcontrib>Deng, Jiankang</creatorcontrib><creatorcontrib>Zafeiriou, Stefanos</creatorcontrib><title>Inverse Image Frequency for Long-tailed Image Recognition</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><description>The long-tailed distribution is a common phenomenon in the real world. Extracted large scale image datasets inevitably demonstrate the long-tailed property and models trained with imbalanced data can obtain high performance for the over-represented categories, but struggle for the under-represented categories, leading to biased predictions and performance degradation. To address this challenge, we propose a novel de-biasing method named Inverse Image Frequency (IIF) . IIF is a multiplicative margin adjustment transformation of the logits in the classification layer of a convolutional neural network. Our method achieves stronger performance than similar works and it is especially useful for downstream tasks such as long-tailed instance segmentation as it produces fewer false positive detections. Our extensive experiments show that IIF surpasses the state of the art on many long-tailed benchmarks such as ImageNet-LT, CIFAR-LT, Places-LT and LVIS, reaching 55.8% top-1 accuracy with ResNet50 on ImageNet-LT and 26.3% segmentation AP with MaskRCNN ResNet50 on LVIS. Code available at https://github.com/kostas1515/iif.</description><subject>Additives</subject><subject>Artificial neural networks</subject><subject>Head</subject><subject>image classification</subject><subject>Image recognition</subject><subject>Image segmentation</subject><subject>instance segmentation</subject><subject>Long tail</subject><subject>margin adjustment</subject><subject>Object detection</subject><subject>Performance degradation</subject><subject>Tail</subject><subject>Task analysis</subject><subject>Training</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEFLAzEQRoMotlbvHjwUvHjZmkmySfYoxepCQZHeQzY7W7ZsNzXZCv33prQH8fQNzPuG4RFyD3QGQIvnVfk5Y5TxGecMhIQLMoZCQEapYJdpprnKFIhiRG5i3FAKIgd5TUZcaSY4yDEpyv4HQ8RpubVrnC4Cfu-xd4dp48N06ft1Nti2w_q8_0Ln1307tL6_JVeN7SLenXNCVovX1fw9W368lfOXZeaY0kMGrHaNFbrm1oKTqLmsXIUFNCC1ZFWNKkWhkaFjulJaUVZXWGlBq5oLPiFPp7O74NNrcTDbNjrsOtuj30fDtFJcU5BFQh__oRu_D316LlEaciZyAYmiJ8oFH2PAxuxCu7XhYICao1WTrJqjVXO2mioPp0qLiH9wpoXiwH8BBqZv3A</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Alexandridis, Konstantinos Panagiotis</creator><creator>Luo, Shan</creator><creator>Nguyen, Anh</creator><creator>Deng, Jiankang</creator><creator>Zafeiriou, Stefanos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4760-0372</orcidid><orcidid>https://orcid.org/0000-0002-3709-6216</orcidid><orcidid>https://orcid.org/0000-0002-2622-8615</orcidid></search><sort><creationdate>20230101</creationdate><title>Inverse Image Frequency for Long-tailed Image Recognition</title><author>Alexandridis, Konstantinos Panagiotis ; Luo, Shan ; Nguyen, Anh ; Deng, Jiankang ; Zafeiriou, Stefanos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-12dcfa48d3aa1c6e836bcbe91f16862bde786298e2ec28b78702dbeb840bd343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Additives</topic><topic>Artificial neural networks</topic><topic>Head</topic><topic>image classification</topic><topic>Image recognition</topic><topic>Image segmentation</topic><topic>instance segmentation</topic><topic>Long tail</topic><topic>margin adjustment</topic><topic>Object detection</topic><topic>Performance degradation</topic><topic>Tail</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alexandridis, Konstantinos Panagiotis</creatorcontrib><creatorcontrib>Luo, Shan</creatorcontrib><creatorcontrib>Nguyen, Anh</creatorcontrib><creatorcontrib>Deng, Jiankang</creatorcontrib><creatorcontrib>Zafeiriou, Stefanos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alexandridis, Konstantinos Panagiotis</au><au>Luo, Shan</au><au>Nguyen, Anh</au><au>Deng, Jiankang</au><au>Zafeiriou, Stefanos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse Image Frequency for Long-tailed Image Recognition</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>32</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>The long-tailed distribution is a common phenomenon in the real world. Extracted large scale image datasets inevitably demonstrate the long-tailed property and models trained with imbalanced data can obtain high performance for the over-represented categories, but struggle for the under-represented categories, leading to biased predictions and performance degradation. To address this challenge, we propose a novel de-biasing method named Inverse Image Frequency (IIF) . IIF is a multiplicative margin adjustment transformation of the logits in the classification layer of a convolutional neural network. Our method achieves stronger performance than similar works and it is especially useful for downstream tasks such as long-tailed instance segmentation as it produces fewer false positive detections. Our extensive experiments show that IIF surpasses the state of the art on many long-tailed benchmarks such as ImageNet-LT, CIFAR-LT, Places-LT and LVIS, reaching 55.8% top-1 accuracy with ResNet50 on ImageNet-LT and 26.3% segmentation AP with MaskRCNN ResNet50 on LVIS. Code available at https://github.com/kostas1515/iif.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>37824316</pmid><doi>10.1109/TIP.2023.3321461</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4760-0372</orcidid><orcidid>https://orcid.org/0000-0002-3709-6216</orcidid><orcidid>https://orcid.org/0000-0002-2622-8615</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2023-01, Vol.32, p.1-1
issn 1057-7149
1941-0042
language eng
recordid cdi_ieee_primary_10284731
source IEEE Electronic Library (IEL)
subjects Additives
Artificial neural networks
Head
image classification
Image recognition
Image segmentation
instance segmentation
Long tail
margin adjustment
Object detection
Performance degradation
Tail
Task analysis
Training
title Inverse Image Frequency for Long-tailed Image Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A23%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20Image%20Frequency%20for%20Long-tailed%20Image%20Recognition&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Alexandridis,%20Konstantinos%20Panagiotis&rft.date=2023-01-01&rft.volume=32&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2023.3321461&rft_dat=%3Cproquest_RIE%3E2881524541%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881524541&rft_id=info:pmid/37824316&rft_ieee_id=10284731&rfr_iscdi=true