Inverse Image Frequency for Long-tailed Image Recognition
The long-tailed distribution is a common phenomenon in the real world. Extracted large scale image datasets inevitably demonstrate the long-tailed property and models trained with imbalanced data can obtain high performance for the over-represented categories, but struggle for the under-represented...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2023-01, Vol.32, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The long-tailed distribution is a common phenomenon in the real world. Extracted large scale image datasets inevitably demonstrate the long-tailed property and models trained with imbalanced data can obtain high performance for the over-represented categories, but struggle for the under-represented categories, leading to biased predictions and performance degradation. To address this challenge, we propose a novel de-biasing method named Inverse Image Frequency (IIF) . IIF is a multiplicative margin adjustment transformation of the logits in the classification layer of a convolutional neural network. Our method achieves stronger performance than similar works and it is especially useful for downstream tasks such as long-tailed instance segmentation as it produces fewer false positive detections. Our extensive experiments show that IIF surpasses the state of the art on many long-tailed benchmarks such as ImageNet-LT, CIFAR-LT, Places-LT and LVIS, reaching 55.8% top-1 accuracy with ResNet50 on ImageNet-LT and 26.3% segmentation AP with MaskRCNN ResNet50 on LVIS. Code available at https://github.com/kostas1515/iif. |
---|---|
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/TIP.2023.3321461 |