ImLiDAR: Cross-Sensor Dynamic Message Propagation Network for 3-D Object Detection
LiDAR and camera, as two different sensors, supply geometric (point clouds) and semantic (RGB images) information of 3-D scenes. However, it is still challenging for existing methods to fuse data from the two cross sensors, making them complementary for quality 3-D object detection (3OD). We propose...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2023, Vol.61, p.1-13 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 61 |
creator | Shen, Yiyang Yu, Rongwei Wu, Peng Xie, Haoran Gong, Lina Qin, Jing Wei, Mingqiang |
description | LiDAR and camera, as two different sensors, supply geometric (point clouds) and semantic (RGB images) information of 3-D scenes. However, it is still challenging for existing methods to fuse data from the two cross sensors, making them complementary for quality 3-D object detection (3OD). We propose ImLiDAR, a new 3OD paradigm to narrow the cross-sensor discrepancies by progressively fusing the multiscale features of camera Images and LiDAR point clouds. ImLiDAR enables to provide the detection head with cross-sensor yet robustly fused features. To achieve this, two core designs exist in ImLiDAR. First, we propose a cross-sensor dynamic message propagation (CDMP) module to combine the best of the multiscale image and point features. Second, we raise a direct set prediction problem that allows designing an effective set-based detector (SD) to tackle the inconsistency of the classification and localization confidences, and the sensitivity of hand-tuned hyperparameters. Besides, the novel SD can be detachable and easily integrated into various detection networks. Comparisons on the KITTI, nuScenes, and SUN-RGBD datasets all show clear visual and numerical improvements of our ImLiDAR over 45 state-of-the-art 3OD methods. |
doi_str_mv | 10.1109/TGRS.2023.3321138 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10268462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10268462</ieee_id><sourcerecordid>2878485483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-79f4f3aa45b4dc5ce88035c7f7b6ebae8b2aa7e25a014c115afb73ba3a5e87663</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhjdGExH9ASYeNvFc3M_u1huhiiRVDOB5s12npCgt7pYY_r3bwMHTe3lm5p0HoVtKRpSS7GE1XSxHjDA-4pxRyvUZGlApdUJSIc7RgNAsTZjO2CW6CmFDCBWSqgFazLZFnY8Xj3ji2xCSJTSh9Tg_NHZbO_wKIdg14Hff7uzadnXb4Dfoflv_havI8STH83IDrsM5dDEicI0uKvsd4OaUQ_Tx_LSavCTFfDqbjIvExR5dorJKVNxaIUvx6aQDrQmXTlWqTKG0oEtmrQImbezqKJW2KhUvLbcStEpTPkT3x7073_7sIXRm0-59E08appUWWgrNI0WPlOv_81CZna-31h8MJaZXZ3p1pldnTurizN1xpgaAfzxLtUgZ_wOoR2nx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878485483</pqid></control><display><type>article</type><title>ImLiDAR: Cross-Sensor Dynamic Message Propagation Network for 3-D Object Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Shen, Yiyang ; Yu, Rongwei ; Wu, Peng ; Xie, Haoran ; Gong, Lina ; Qin, Jing ; Wei, Mingqiang</creator><creatorcontrib>Shen, Yiyang ; Yu, Rongwei ; Wu, Peng ; Xie, Haoran ; Gong, Lina ; Qin, Jing ; Wei, Mingqiang</creatorcontrib><description>LiDAR and camera, as two different sensors, supply geometric (point clouds) and semantic (RGB images) information of 3-D scenes. However, it is still challenging for existing methods to fuse data from the two cross sensors, making them complementary for quality 3-D object detection (3OD). We propose ImLiDAR, a new 3OD paradigm to narrow the cross-sensor discrepancies by progressively fusing the multiscale features of camera Images and LiDAR point clouds. ImLiDAR enables to provide the detection head with cross-sensor yet robustly fused features. To achieve this, two core designs exist in ImLiDAR. First, we propose a cross-sensor dynamic message propagation (CDMP) module to combine the best of the multiscale image and point features. Second, we raise a direct set prediction problem that allows designing an effective set-based detector (SD) to tackle the inconsistency of the classification and localization confidences, and the sensitivity of hand-tuned hyperparameters. Besides, the novel SD can be detachable and easily integrated into various detection networks. Comparisons on the KITTI, nuScenes, and SUN-RGBD datasets all show clear visual and numerical improvements of our ImLiDAR over 45 state-of-the-art 3OD methods.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3321138</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-D object detection (3OD) ; Cameras ; Color imagery ; cross sensors ; Detection ; Detectors ; dynamic message propagation ; Feature extraction ; ImLiDAR ; Laser radar ; Lidar ; Localization ; Messages ; Object detection ; Object recognition ; Point cloud compression ; Sensors ; set-based detector (SD) ; Three dimensional models ; Three-dimensional displays</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-79f4f3aa45b4dc5ce88035c7f7b6ebae8b2aa7e25a014c115afb73ba3a5e87663</cites><orcidid>0000-0002-5272-6706 ; 0000-0002-2961-0860 ; 0000-0003-2311-0950 ; 0000-0003-0965-3617 ; 0000-0003-0429-490X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10268462$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10268462$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shen, Yiyang</creatorcontrib><creatorcontrib>Yu, Rongwei</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Xie, Haoran</creatorcontrib><creatorcontrib>Gong, Lina</creatorcontrib><creatorcontrib>Qin, Jing</creatorcontrib><creatorcontrib>Wei, Mingqiang</creatorcontrib><title>ImLiDAR: Cross-Sensor Dynamic Message Propagation Network for 3-D Object Detection</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>LiDAR and camera, as two different sensors, supply geometric (point clouds) and semantic (RGB images) information of 3-D scenes. However, it is still challenging for existing methods to fuse data from the two cross sensors, making them complementary for quality 3-D object detection (3OD). We propose ImLiDAR, a new 3OD paradigm to narrow the cross-sensor discrepancies by progressively fusing the multiscale features of camera Images and LiDAR point clouds. ImLiDAR enables to provide the detection head with cross-sensor yet robustly fused features. To achieve this, two core designs exist in ImLiDAR. First, we propose a cross-sensor dynamic message propagation (CDMP) module to combine the best of the multiscale image and point features. Second, we raise a direct set prediction problem that allows designing an effective set-based detector (SD) to tackle the inconsistency of the classification and localization confidences, and the sensitivity of hand-tuned hyperparameters. Besides, the novel SD can be detachable and easily integrated into various detection networks. Comparisons on the KITTI, nuScenes, and SUN-RGBD datasets all show clear visual and numerical improvements of our ImLiDAR over 45 state-of-the-art 3OD methods.</description><subject>3-D object detection (3OD)</subject><subject>Cameras</subject><subject>Color imagery</subject><subject>cross sensors</subject><subject>Detection</subject><subject>Detectors</subject><subject>dynamic message propagation</subject><subject>Feature extraction</subject><subject>ImLiDAR</subject><subject>Laser radar</subject><subject>Lidar</subject><subject>Localization</subject><subject>Messages</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Point cloud compression</subject><subject>Sensors</subject><subject>set-based detector (SD)</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwkAQhjdGExH9ASYeNvFc3M_u1huhiiRVDOB5s12npCgt7pYY_r3bwMHTe3lm5p0HoVtKRpSS7GE1XSxHjDA-4pxRyvUZGlApdUJSIc7RgNAsTZjO2CW6CmFDCBWSqgFazLZFnY8Xj3ji2xCSJTSh9Tg_NHZbO_wKIdg14Hff7uzadnXb4Dfoflv_havI8STH83IDrsM5dDEicI0uKvsd4OaUQ_Tx_LSavCTFfDqbjIvExR5dorJKVNxaIUvx6aQDrQmXTlWqTKG0oEtmrQImbezqKJW2KhUvLbcStEpTPkT3x7073_7sIXRm0-59E08appUWWgrNI0WPlOv_81CZna-31h8MJaZXZ3p1pldnTurizN1xpgaAfzxLtUgZ_wOoR2nx</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Shen, Yiyang</creator><creator>Yu, Rongwei</creator><creator>Wu, Peng</creator><creator>Xie, Haoran</creator><creator>Gong, Lina</creator><creator>Qin, Jing</creator><creator>Wei, Mingqiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5272-6706</orcidid><orcidid>https://orcid.org/0000-0002-2961-0860</orcidid><orcidid>https://orcid.org/0000-0003-2311-0950</orcidid><orcidid>https://orcid.org/0000-0003-0965-3617</orcidid><orcidid>https://orcid.org/0000-0003-0429-490X</orcidid></search><sort><creationdate>2023</creationdate><title>ImLiDAR: Cross-Sensor Dynamic Message Propagation Network for 3-D Object Detection</title><author>Shen, Yiyang ; Yu, Rongwei ; Wu, Peng ; Xie, Haoran ; Gong, Lina ; Qin, Jing ; Wei, Mingqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-79f4f3aa45b4dc5ce88035c7f7b6ebae8b2aa7e25a014c115afb73ba3a5e87663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-D object detection (3OD)</topic><topic>Cameras</topic><topic>Color imagery</topic><topic>cross sensors</topic><topic>Detection</topic><topic>Detectors</topic><topic>dynamic message propagation</topic><topic>Feature extraction</topic><topic>ImLiDAR</topic><topic>Laser radar</topic><topic>Lidar</topic><topic>Localization</topic><topic>Messages</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Point cloud compression</topic><topic>Sensors</topic><topic>set-based detector (SD)</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Yiyang</creatorcontrib><creatorcontrib>Yu, Rongwei</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Xie, Haoran</creatorcontrib><creatorcontrib>Gong, Lina</creatorcontrib><creatorcontrib>Qin, Jing</creatorcontrib><creatorcontrib>Wei, Mingqiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shen, Yiyang</au><au>Yu, Rongwei</au><au>Wu, Peng</au><au>Xie, Haoran</au><au>Gong, Lina</au><au>Qin, Jing</au><au>Wei, Mingqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ImLiDAR: Cross-Sensor Dynamic Message Propagation Network for 3-D Object Detection</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>LiDAR and camera, as two different sensors, supply geometric (point clouds) and semantic (RGB images) information of 3-D scenes. However, it is still challenging for existing methods to fuse data from the two cross sensors, making them complementary for quality 3-D object detection (3OD). We propose ImLiDAR, a new 3OD paradigm to narrow the cross-sensor discrepancies by progressively fusing the multiscale features of camera Images and LiDAR point clouds. ImLiDAR enables to provide the detection head with cross-sensor yet robustly fused features. To achieve this, two core designs exist in ImLiDAR. First, we propose a cross-sensor dynamic message propagation (CDMP) module to combine the best of the multiscale image and point features. Second, we raise a direct set prediction problem that allows designing an effective set-based detector (SD) to tackle the inconsistency of the classification and localization confidences, and the sensitivity of hand-tuned hyperparameters. Besides, the novel SD can be detachable and easily integrated into various detection networks. Comparisons on the KITTI, nuScenes, and SUN-RGBD datasets all show clear visual and numerical improvements of our ImLiDAR over 45 state-of-the-art 3OD methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3321138</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5272-6706</orcidid><orcidid>https://orcid.org/0000-0002-2961-0860</orcidid><orcidid>https://orcid.org/0000-0003-2311-0950</orcidid><orcidid>https://orcid.org/0000-0003-0965-3617</orcidid><orcidid>https://orcid.org/0000-0003-0429-490X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-13 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_10268462 |
source | IEEE Electronic Library (IEL) |
subjects | 3-D object detection (3OD) Cameras Color imagery cross sensors Detection Detectors dynamic message propagation Feature extraction ImLiDAR Laser radar Lidar Localization Messages Object detection Object recognition Point cloud compression Sensors set-based detector (SD) Three dimensional models Three-dimensional displays |
title | ImLiDAR: Cross-Sensor Dynamic Message Propagation Network for 3-D Object Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ImLiDAR:%20Cross-Sensor%20Dynamic%20Message%20Propagation%20Network%20for%203-D%20Object%20Detection&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Shen,%20Yiyang&rft.date=2023&rft.volume=61&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3321138&rft_dat=%3Cproquest_RIE%3E2878485483%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878485483&rft_id=info:pmid/&rft_ieee_id=10268462&rfr_iscdi=true |