ImLiDAR: Cross-Sensor Dynamic Message Propagation Network for 3-D Object Detection

LiDAR and camera, as two different sensors, supply geometric (point clouds) and semantic (RGB images) information of 3-D scenes. However, it is still challenging for existing methods to fuse data from the two cross sensors, making them complementary for quality 3-D object detection (3OD). We propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2023, Vol.61, p.1-13
Hauptverfasser: Shen, Yiyang, Yu, Rongwei, Wu, Peng, Xie, Haoran, Gong, Lina, Qin, Jing, Wei, Mingqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:LiDAR and camera, as two different sensors, supply geometric (point clouds) and semantic (RGB images) information of 3-D scenes. However, it is still challenging for existing methods to fuse data from the two cross sensors, making them complementary for quality 3-D object detection (3OD). We propose ImLiDAR, a new 3OD paradigm to narrow the cross-sensor discrepancies by progressively fusing the multiscale features of camera Images and LiDAR point clouds. ImLiDAR enables to provide the detection head with cross-sensor yet robustly fused features. To achieve this, two core designs exist in ImLiDAR. First, we propose a cross-sensor dynamic message propagation (CDMP) module to combine the best of the multiscale image and point features. Second, we raise a direct set prediction problem that allows designing an effective set-based detector (SD) to tackle the inconsistency of the classification and localization confidences, and the sensitivity of hand-tuned hyperparameters. Besides, the novel SD can be detachable and easily integrated into various detection networks. Comparisons on the KITTI, nuScenes, and SUN-RGBD datasets all show clear visual and numerical improvements of our ImLiDAR over 45 state-of-the-art 3OD methods.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2023.3321138