A Computationally-Efficient and QoS-Aware Data Offloading Framework for Biased Fog Networks

Fog computing alleviates the cloud-centric limitations of Internet of Things (IoT). However, in the dynamic landscape of fog computing, the uneven distribution of workload among fog nodes emerges as a substantial obstacle to both, data latency and network profit. To mitigate workload imbalances, dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2024-03, Vol.71 (3), p.1-1
Hauptverfasser: Shukla, Aadi, Sood, Akshat, Pandey, Om Jee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fog computing alleviates the cloud-centric limitations of Internet of Things (IoT). However, in the dynamic landscape of fog computing, the uneven distribution of workload among fog nodes emerges as a substantial obstacle to both, data latency and network profit. To mitigate workload imbalances, data packet offloading offers a twofold benefit. The offloading fog node leverages latency satisfaction, while the recipient fog node gains a financial advantage by leasing out its available processing resources. Motivated by the aforementioned advantages, in this work, we propose a novel load-balancing method to maximize monetary gains without affecting the Quality-of-Service (QoS) constraints of the subscribed IoT users in a biased fog network. The proposed method introduces an Optimized Matching Theory (OMAT)-guided data offloading framework, employing many to many matching without externalities. The method returns a novel matching among disparate fog nodes thereby achieving uniform workload distribution. The obtained results demonstrate that the proposed method attains improved performance in terms of inverse latency, throughput, and non-matchings, when compared to existing methods in the literature.
ISSN:1549-7747
1558-3791
DOI:10.1109/TCSII.2023.3319977