A Computationally-Efficient and QoS-Aware Data Offloading Framework for Biased Fog Networks
Fog computing alleviates the cloud-centric limitations of Internet of Things (IoT). However, in the dynamic landscape of fog computing, the uneven distribution of workload among fog nodes emerges as a substantial obstacle to both, data latency and network profit. To mitigate workload imbalances, dat...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2024-03, Vol.71 (3), p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fog computing alleviates the cloud-centric limitations of Internet of Things (IoT). However, in the dynamic landscape of fog computing, the uneven distribution of workload among fog nodes emerges as a substantial obstacle to both, data latency and network profit. To mitigate workload imbalances, data packet offloading offers a twofold benefit. The offloading fog node leverages latency satisfaction, while the recipient fog node gains a financial advantage by leasing out its available processing resources. Motivated by the aforementioned advantages, in this work, we propose a novel load-balancing method to maximize monetary gains without affecting the Quality-of-Service (QoS) constraints of the subscribed IoT users in a biased fog network. The proposed method introduces an Optimized Matching Theory (OMAT)-guided data offloading framework, employing many to many matching without externalities. The method returns a novel matching among disparate fog nodes thereby achieving uniform workload distribution. The obtained results demonstrate that the proposed method attains improved performance in terms of inverse latency, throughput, and non-matchings, when compared to existing methods in the literature. |
---|---|
ISSN: | 1549-7747 1558-3791 |
DOI: | 10.1109/TCSII.2023.3319977 |