Piston Sensing for Sparse Aperture Systems via All-Optical Diffractive Neural Network

It is a crucial issue to realize real-time piston correction in the area of sparse aperture imaging. This paper demonstrates that an optical diffractive neural network is capable of achieving light-speed piston sensing. By using detectable intensity distributions to represent pistons, the proposed m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics journal 2024-10, Vol.16 (5), p.1-6
Hauptverfasser: Ma, Xiafei, Xie, Zongliang, Ma, Haotong, Ren, Ge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 5
container_start_page 1
container_title IEEE photonics journal
container_volume 16
creator Ma, Xiafei
Xie, Zongliang
Ma, Haotong
Ren, Ge
description It is a crucial issue to realize real-time piston correction in the area of sparse aperture imaging. This paper demonstrates that an optical diffractive neural network is capable of achieving light-speed piston sensing. By using detectable intensity distributions to represent pistons, the proposed method can convert the imaging optical field into estimated pistons without imaging acquisition and electrical processing, thus realizing the piston sensing task all-optically. The simulations verify the feasibility of the approach for fine phasing, with testing accuracy of λ/40 attained. This method can greatly improve the real-time performance of piston sensing and contribute to the development of sparse aperture system.
doi_str_mv 10.1109/JPHOT.2023.3319629
format Article
fullrecord <record><control><sourceid>doaj_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10265032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10265032</ieee_id><doaj_id>oai_doaj_org_article_6fbc1c9d90964194a69727d6d24da1ec</doaj_id><sourcerecordid>oai_doaj_org_article_6fbc1c9d90964194a69727d6d24da1ec</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-a11e24199f618d2b13c0fa22cc07ec68d388387a9d13530e5873db6de7b78dd33</originalsourceid><addsrcrecordid>eNpNkNtqAjEQhkNpodb2BUov8gJrc9hNNpdiD1pEBfU6ZJNZiV1dSVaLb9_1QOnVDD_83wwfQs-U9Cgl6vVrNpwueoww3uOcKsHUDepQlfKEiFTe_u1Zdo8eYlwTIhTNVActZz429RbPYRv9doXLOuD5zoQIuL-D0OwD4PkxNrCJ-OAN7ldVMt013poKv_myDMY2_gB4AvvQRhNofurw_YjuSlNFeLrOLlp-vC8Gw2Q8_RwN-uPEcqaaxFAKLKVKlYLmjhWUW1IaxqwlEqzIHc9znkujHOUZJ5DlkrtCOJCFzJ3jvItGF66rzVrvgt-YcNS18foc1GGlTWifrUCLsrDUKqeIEu3J1AglmXTCsdQZCrZlsQvLhjrGAOUfjxJ9kqzPkvVJsr5Kbksvl5IHgH8FJjLCGf8Fqq94-A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Piston Sensing for Sparse Aperture Systems via All-Optical Diffractive Neural Network</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ma, Xiafei ; Xie, Zongliang ; Ma, Haotong ; Ren, Ge</creator><creatorcontrib>Ma, Xiafei ; Xie, Zongliang ; Ma, Haotong ; Ren, Ge</creatorcontrib><description>It is a crucial issue to realize real-time piston correction in the area of sparse aperture imaging. This paper demonstrates that an optical diffractive neural network is capable of achieving light-speed piston sensing. By using detectable intensity distributions to represent pistons, the proposed method can convert the imaging optical field into estimated pistons without imaging acquisition and electrical processing, thus realizing the piston sensing task all-optically. The simulations verify the feasibility of the approach for fine phasing, with testing accuracy of λ/40 attained. This method can greatly improve the real-time performance of piston sensing and contribute to the development of sparse aperture system.</description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2023.3319629</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive optics ; Apertures ; diffractive neural network ; Optical diffraction ; Optical imaging ; Optical sensors ; Piston sensing ; Pistons ; sparse aperture system ; Testing</subject><ispartof>IEEE photonics journal, 2024-10, Vol.16 (5), p.1-6</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c329t-a11e24199f618d2b13c0fa22cc07ec68d388387a9d13530e5873db6de7b78dd33</cites><orcidid>0000-0001-8557-5177 ; 0000-0002-8553-2537 ; 0000-0001-8359-370X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10265032$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Ma, Xiafei</creatorcontrib><creatorcontrib>Xie, Zongliang</creatorcontrib><creatorcontrib>Ma, Haotong</creatorcontrib><creatorcontrib>Ren, Ge</creatorcontrib><title>Piston Sensing for Sparse Aperture Systems via All-Optical Diffractive Neural Network</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description>It is a crucial issue to realize real-time piston correction in the area of sparse aperture imaging. This paper demonstrates that an optical diffractive neural network is capable of achieving light-speed piston sensing. By using detectable intensity distributions to represent pistons, the proposed method can convert the imaging optical field into estimated pistons without imaging acquisition and electrical processing, thus realizing the piston sensing task all-optically. The simulations verify the feasibility of the approach for fine phasing, with testing accuracy of λ/40 attained. This method can greatly improve the real-time performance of piston sensing and contribute to the development of sparse aperture system.</description><subject>Adaptive optics</subject><subject>Apertures</subject><subject>diffractive neural network</subject><subject>Optical diffraction</subject><subject>Optical imaging</subject><subject>Optical sensors</subject><subject>Piston sensing</subject><subject>Pistons</subject><subject>sparse aperture system</subject><subject>Testing</subject><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkNtqAjEQhkNpodb2BUov8gJrc9hNNpdiD1pEBfU6ZJNZiV1dSVaLb9_1QOnVDD_83wwfQs-U9Cgl6vVrNpwueoww3uOcKsHUDepQlfKEiFTe_u1Zdo8eYlwTIhTNVActZz429RbPYRv9doXLOuD5zoQIuL-D0OwD4PkxNrCJ-OAN7ldVMt013poKv_myDMY2_gB4AvvQRhNofurw_YjuSlNFeLrOLlp-vC8Gw2Q8_RwN-uPEcqaaxFAKLKVKlYLmjhWUW1IaxqwlEqzIHc9znkujHOUZJ5DlkrtCOJCFzJ3jvItGF66rzVrvgt-YcNS18foc1GGlTWifrUCLsrDUKqeIEu3J1AglmXTCsdQZCrZlsQvLhjrGAOUfjxJ9kqzPkvVJsr5Kbksvl5IHgH8FJjLCGf8Fqq94-A</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Ma, Xiafei</creator><creator>Xie, Zongliang</creator><creator>Ma, Haotong</creator><creator>Ren, Ge</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8557-5177</orcidid><orcidid>https://orcid.org/0000-0002-8553-2537</orcidid><orcidid>https://orcid.org/0000-0001-8359-370X</orcidid></search><sort><creationdate>20241001</creationdate><title>Piston Sensing for Sparse Aperture Systems via All-Optical Diffractive Neural Network</title><author>Ma, Xiafei ; Xie, Zongliang ; Ma, Haotong ; Ren, Ge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-a11e24199f618d2b13c0fa22cc07ec68d388387a9d13530e5873db6de7b78dd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive optics</topic><topic>Apertures</topic><topic>diffractive neural network</topic><topic>Optical diffraction</topic><topic>Optical imaging</topic><topic>Optical sensors</topic><topic>Piston sensing</topic><topic>Pistons</topic><topic>sparse aperture system</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Xiafei</creatorcontrib><creatorcontrib>Xie, Zongliang</creatorcontrib><creatorcontrib>Ma, Haotong</creatorcontrib><creatorcontrib>Ren, Ge</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Xiafei</au><au>Xie, Zongliang</au><au>Ma, Haotong</au><au>Ren, Ge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Piston Sensing for Sparse Aperture Systems via All-Optical Diffractive Neural Network</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>16</volume><issue>5</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1943-0655</issn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract>It is a crucial issue to realize real-time piston correction in the area of sparse aperture imaging. This paper demonstrates that an optical diffractive neural network is capable of achieving light-speed piston sensing. By using detectable intensity distributions to represent pistons, the proposed method can convert the imaging optical field into estimated pistons without imaging acquisition and electrical processing, thus realizing the piston sensing task all-optically. The simulations verify the feasibility of the approach for fine phasing, with testing accuracy of λ/40 attained. This method can greatly improve the real-time performance of piston sensing and contribute to the development of sparse aperture system.</abstract><pub>IEEE</pub><doi>10.1109/JPHOT.2023.3319629</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8557-5177</orcidid><orcidid>https://orcid.org/0000-0002-8553-2537</orcidid><orcidid>https://orcid.org/0000-0001-8359-370X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-0655
ispartof IEEE photonics journal, 2024-10, Vol.16 (5), p.1-6
issn 1943-0655
1943-0647
language eng
recordid cdi_ieee_primary_10265032
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Adaptive optics
Apertures
diffractive neural network
Optical diffraction
Optical imaging
Optical sensors
Piston sensing
Pistons
sparse aperture system
Testing
title Piston Sensing for Sparse Aperture Systems via All-Optical Diffractive Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T09%3A03%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Piston%20Sensing%20for%20Sparse%20Aperture%20Systems%20via%20All-Optical%20Diffractive%20Neural%20Network&rft.jtitle=IEEE%20photonics%20journal&rft.au=Ma,%20Xiafei&rft.date=2024-10-01&rft.volume=16&rft.issue=5&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1943-0655&rft.eissn=1943-0647&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2023.3319629&rft_dat=%3Cdoaj_ieee_%3Eoai_doaj_org_article_6fbc1c9d90964194a69727d6d24da1ec%3C/doaj_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10265032&rft_doaj_id=oai_doaj_org_article_6fbc1c9d90964194a69727d6d24da1ec&rfr_iscdi=true