Piston Sensing for Sparse Aperture Systems via All-Optical Diffractive Neural Network
It is a crucial issue to realize real-time piston correction in the area of sparse aperture imaging. This paper demonstrates that an optical diffractive neural network is capable of achieving light-speed piston sensing. By using detectable intensity distributions to represent pistons, the proposed m...
Gespeichert in:
Veröffentlicht in: | IEEE photonics journal 2024-10, Vol.16 (5), p.1-6 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is a crucial issue to realize real-time piston correction in the area of sparse aperture imaging. This paper demonstrates that an optical diffractive neural network is capable of achieving light-speed piston sensing. By using detectable intensity distributions to represent pistons, the proposed method can convert the imaging optical field into estimated pistons without imaging acquisition and electrical processing, thus realizing the piston sensing task all-optically. The simulations verify the feasibility of the approach for fine phasing, with testing accuracy of λ/40 attained. This method can greatly improve the real-time performance of piston sensing and contribute to the development of sparse aperture system. |
---|---|
ISSN: | 1943-0655 1943-0647 |
DOI: | 10.1109/JPHOT.2023.3319629 |