Piston Sensing for Sparse Aperture Systems via All-Optical Diffractive Neural Network

It is a crucial issue to realize real-time piston correction in the area of sparse aperture imaging. This paper demonstrates that an optical diffractive neural network is capable of achieving light-speed piston sensing. By using detectable intensity distributions to represent pistons, the proposed m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics journal 2024-10, Vol.16 (5), p.1-6
Hauptverfasser: Ma, Xiafei, Xie, Zongliang, Ma, Haotong, Ren, Ge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is a crucial issue to realize real-time piston correction in the area of sparse aperture imaging. This paper demonstrates that an optical diffractive neural network is capable of achieving light-speed piston sensing. By using detectable intensity distributions to represent pistons, the proposed method can convert the imaging optical field into estimated pistons without imaging acquisition and electrical processing, thus realizing the piston sensing task all-optically. The simulations verify the feasibility of the approach for fine phasing, with testing accuracy of λ/40 attained. This method can greatly improve the real-time performance of piston sensing and contribute to the development of sparse aperture system.
ISSN:1943-0655
1943-0647
DOI:10.1109/JPHOT.2023.3319629