Hausdorff Dimension Estimates for Interconnected Systems With Variable Metrics

In this letter, we develop a framework for estimating the Hausdorff dimension of a compact invariant set for both autonomous and interconnected systems. We first generalize Smith's method for Hausdorff dimension estimates by using variable metrics in linear matrix inequalities. Then, we study o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE control systems letters 2023, Vol.7, p.3247-3252
Hauptverfasser: Kato, Rui, Ishii, Hideaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this letter, we develop a framework for estimating the Hausdorff dimension of a compact invariant set for both autonomous and interconnected systems. We first generalize Smith's method for Hausdorff dimension estimates by using variable metrics in linear matrix inequalities. Then, we study open systems with a characterization similar to the differential dissipativity theory. For linear time-invariant systems, we show that our characterization can be considered as a pure input/output property. This fact would be important because it is independent of internal model representations. Finally, we provide an estimate of the attractor dimension for feedback and interconnected systems. Our estimation is scalable in the sense that the components in an interconnected system can be analyzed independently.
ISSN:2475-1456
2475-1456
DOI:10.1109/LCSYS.2023.3317029