A Sophisticated Slide Mode Controller of Microgrid System Load Frequency Control Under False Data Injection Attack and Actuator Time Delay

Load frequency control (LFC) is a crucial application in modern power systems as it ensures the system frequency remains within an acceptable range through demand control and active power generation. However, as information and communication technology (ICT) becomes more prevalent in power system, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2024-03, Vol.60 (2), p.2117-2126
Hauptverfasser: Ibraheem, Mohamad Issa, Edrisi, Mehdi, Alhelou, Hassan Haes, Gholipour, Mehdi, Al-Hinai, Amer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Load frequency control (LFC) is a crucial application in modern power systems as it ensures the system frequency remains within an acceptable range through demand control and active power generation. However, as information and communication technology (ICT) becomes more prevalent in power system, there are both opportunities for improved reliability and efficiency as well as potential security threats. This article proposes an LFC approach that takes into account the simultaneous occurrence of false data injection (FDI) attacks on the sensor-controller side, disturbances in the states of the system and time delays in the controller-actuator side. To tackle these challenges, a slide mode observer is utilized to estimate system states and detect cyber-attack signals as an extra virtual state. Subsequently, a cyber-attack-resilient predictor slide mode controller is designed to establish a robust control law capable of overcoming system challenges, when all system states are not within reach. Therefore, the robust control law is designed based on the estimated states, cyber signal and measured system output. By integrating these techniques, the proposed methodology offers a promising solution to enhance the resilience and performance of power system faced with cybersecurity threats. It improves the response speed of the system and minimizes the maximum overshoot compared to some published resilience control laws, thereby ensuring secure and reliable load frequency control. Additionally, reducing the number of sensors in the system helps to reduce overall costs. Finally, the performance of the controller is also verified in real-time using the OPAL-RT simulator testbed.
ISSN:0093-9994
1939-9367
DOI:10.1109/TIA.2023.3316190