Adaptive Multi-Dimensional Shrinkage Block for Automatic Modulation Recognition

Low Signal-to-Noise Ratio (SNR) conditions pose significant challenges in Automatic Modulation Recognition (AMR) tasks. In this letter, we propose an innovative Multi-Dimensional Shrinkage Block (MDSB) to address these challenges. MDSB is a novel Convolutional Neural Network (CNN) architecture that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2023-11, Vol.27 (11), p.2968-2972
Hauptverfasser: Wei, Tao, Li, Zan, Bi, Dexin, Shao, Zixuan, Gao, Jingliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Low Signal-to-Noise Ratio (SNR) conditions pose significant challenges in Automatic Modulation Recognition (AMR) tasks. In this letter, we propose an innovative Multi-Dimensional Shrinkage Block (MDSB) to address these challenges. MDSB is a novel Convolutional Neural Network (CNN) architecture that effectively enhances the noise robustness of CNNs by employing a unique denoising mechanism, which tackles the limitations of CNNs in extracting temporal information. Leveraging the MDSB, a new AMR network named the Spatial and Channel-wise Shrinkage Neural Network (SCSNN) is introduced. Comprehensive experiments on multiple public datasets demonstrate the superior recognition performance of the proposed SCSNN model in comparison to other methods.
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2023.3314623