Adaptive Multi-Dimensional Shrinkage Block for Automatic Modulation Recognition
Low Signal-to-Noise Ratio (SNR) conditions pose significant challenges in Automatic Modulation Recognition (AMR) tasks. In this letter, we propose an innovative Multi-Dimensional Shrinkage Block (MDSB) to address these challenges. MDSB is a novel Convolutional Neural Network (CNN) architecture that...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2023-11, Vol.27 (11), p.2968-2972 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Low Signal-to-Noise Ratio (SNR) conditions pose significant challenges in Automatic Modulation Recognition (AMR) tasks. In this letter, we propose an innovative Multi-Dimensional Shrinkage Block (MDSB) to address these challenges. MDSB is a novel Convolutional Neural Network (CNN) architecture that effectively enhances the noise robustness of CNNs by employing a unique denoising mechanism, which tackles the limitations of CNNs in extracting temporal information. Leveraging the MDSB, a new AMR network named the Spatial and Channel-wise Shrinkage Neural Network (SCSNN) is introduced. Comprehensive experiments on multiple public datasets demonstrate the superior recognition performance of the proposed SCSNN model in comparison to other methods. |
---|---|
ISSN: | 1089-7798 1558-2558 |
DOI: | 10.1109/LCOMM.2023.3314623 |