Hyperparameter Learning Under Data Poisoning: Analysis of the Influence of Regularization via Multiobjective Bilevel Optimization
Machine learning (ML) algorithms are vulnerable to poisoning attacks, where a fraction of the training data is manipulated to deliberately degrade the algorithms' performance. Optimal attacks can be formulated as bilevel optimization problems and help to assess their robustness in worst case sc...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2024-11, Vol.35 (11), p.16008-16022 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Machine learning (ML) algorithms are vulnerable to poisoning attacks, where a fraction of the training data is manipulated to deliberately degrade the algorithms' performance. Optimal attacks can be formulated as bilevel optimization problems and help to assess their robustness in worst case scenarios. We show that current approaches, which typically assume that hyperparameters remain constant, lead to an overly pessimistic view of the algorithms' robustness and of the impact of regularization. We propose a novel optimal attack formulation that considers the effect of the attack on the hyperparameters and models the attack as a multiobjective bilevel optimization problem. This allows us to formulate optimal attacks, learn hyperparameters, and evaluate robustness under worst case conditions. We apply this attack formulation to several ML classifiers using L_{2} and L_{1} regularization. Our evaluation on multiple datasets shows that choosing an "a priori" constant value for the regularization hyperparameter can be detrimental to the performance of the algorithms. This confirms the limitations of previous strategies and evidences the benefits of using L_{2} and L_{1} regularization to dampen the effect of poisoning attacks, when hyperparameters are learned using a small trusted dataset. Additionally, our results show that the use of regularization plays an important robustness and stability role in complex models, such as deep neural networks (DNNs), where the attacker can have more flexibility to manipulate the decision boundary. |
---|---|
ISSN: | 2162-237X 2162-2388 2162-2388 |
DOI: | 10.1109/TNNLS.2023.3291648 |