Design of a Fully Pulley-Guided Wire-Driven Prismatic Tensegrity Robot: Friction Impact to Robot Payload Capacity
The tensegrity structure was initially created as a static structure, but it has gained significant attention among robotics researchers due to its benefits, including high payload capability, shock resistance, and resiliency. However, implementing tensegrity structures in robotics presents new tech...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2023-10, Vol.8 (10), p.1-8 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The tensegrity structure was initially created as a static structure, but it has gained significant attention among robotics researchers due to its benefits, including high payload capability, shock resistance, and resiliency. However, implementing tensegrity structures in robotics presents new technical challenges, primarily related to their wire-driven structure, such as wire-routing and wire-friction problems. Therefore, this research letter proposes a technical solution for the aforementioned problems. The main contribution of this research is the design of frictionless pulley-guided nodes. To validate the proposed concept, we conducted comparative experiments between a common tensegrity prototype and a pulley-guided prototype, evaluating wire tension distribution and payload capacity. |
---|---|
ISSN: | 2377-3766 2377-3766 |
DOI: | 10.1109/LRA.2023.3309128 |