Gradient-Guided Learning Network for Infrared Small Target Detection

Recently, infrared small target detection has attracted extensive attention. However, due to the small size and the lack of intrinsic features of infrared small targets, the existing methods generally have the problem of inaccurate edge positioning and the target is easily submerged by the backgroun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2023-01, Vol.20, p.1-1
Hauptverfasser: Zhao, Jinmiao, Yu, Chuang, Shi, Zelin, Liu, Yunpeng, Zhang, Yingdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, infrared small target detection has attracted extensive attention. However, due to the small size and the lack of intrinsic features of infrared small targets, the existing methods generally have the problem of inaccurate edge positioning and the target is easily submerged by the background. Therefore, we propose an innovative gradient-guided learning network (GGL-Net). Specifically, we are the first to explore the introduction of gradient magnitude images into the deep learning-based infrared small target detection method, which is conducive to emphasizing the edge details and alleviating the problem of inaccurate edge positioning of small targets. On this basis, we propose a novel dual-branch feature extraction network that utilizes the proposed gradient supplementary module (GSM) to encode raw gradient information into deeper network layers and embeds attention mechanisms reasonably to enhance feature extraction ability. In addition, we construct a two-way guidance fusion module (TGFM), which fully considers the characteristics of feature maps at different levels. It can facilitate the effective fusion of multi-scale feature maps and extract richer semantic information and detailed information through reasonable two-way guidance. Extensive experiments prove that GGL-Net has achieves state-of-the-art results on the public real NUAA-SIRST dataset and the public synthetic NUDT-SIRST dataset.
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2023.3308783