SimSwap++: Towards Faster and High-Quality Identity Swapping
Face identity editing (FIE) shows great value in AI content creation. Low-resolution FIE approaches have achieved tremendous progress, but high-quality FIE struggles. Two major challenges hinder higher-resolution and higher-performance development of FIE: lack of high-resolution dataset and unaccept...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2024-01, Vol.46 (1), p.1-18 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Face identity editing (FIE) shows great value in AI content creation. Low-resolution FIE approaches have achieved tremendous progress, but high-quality FIE struggles. Two major challenges hinder higher-resolution and higher-performance development of FIE: lack of high-resolution dataset and unacceptable complexity forbidding for mobile platforms. To address both issues, we establish a novel large-scale, high-quality dataset tailored for FIE. Based on our SimSwap [1], we propose an upgraded version named SimSwap++ with significantly boosted model efficiency. SimSwap++ features two major innovations for high-performance model compression. Firstly, a novel computational primitive named Conditional Dynamic Convolution (CD-Conv) is proposed to address the inefficiency of conditional schemes (e.g., AdaIN) in tiny models. CD-Conv achieves anisotropic processing and injection with significantly lower complexity compared to standard conditional operators, e.g., modulated convolution. Secondly, a Morphable Knowledge Distillation (MKD) is presented to further trim the overall model. Unlike conventional homogeneous teacher-student structures, MKD is designed to be heterogeneous and mutually compensable, endowing the student with the multi-path morphable property; thus, our student maximally inherits the teacher' knowledge after distillation while further reducing its complexity through structure re-parameterization. Extensive experiments demonstrate that our SimSwap++ achieves state-of-the-art performance (97.55\% ID accuracy on FaceForensics++) with extremely low complexity (2.5 GFLOPs). |
---|---|
ISSN: | 0162-8828 2160-9292 1939-3539 |
DOI: | 10.1109/TPAMI.2023.3307156 |