Assuring Safety-Critical Machine Learning-Enabled Systems: Challenges and Promise
We outline how assurance processes work for conventional systems and identify the primary difficulty in applying them to machine learning-enabled systems. We then outline a path forward, identifying where considerable research remains.
Gespeichert in:
Veröffentlicht in: | Computer (Long Beach, Calif.) Calif.), 2023-09, Vol.56 (9), p.83-88 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We outline how assurance processes work for conventional systems and identify the primary difficulty in applying them to machine learning-enabled systems. We then outline a path forward, identifying where considerable research remains. |
---|---|
ISSN: | 0018-9162 1558-0814 |
DOI: | 10.1109/MC.2023.3266860 |