A Data-Driven Inductor Modeling Technique Using Parametric Circuit Simulation and Deep Learning
Optimization of magnetic components design, such as power inductors and transformers, is most needed to improve the performance of future power electronics. However, power electronics designers face the problem of not having sufficient magnetic component models available for their designs. In this p...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2023-11, Vol.59 (11), p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 11 |
container_start_page | 1 |
container_title | IEEE transactions on magnetics |
container_volume | 59 |
creator | Motomatsu, Takehiro Koga, Takahiro Shigei, Noritaka Yamaguchi, Masahiro Itagaki, Atsushi Ishizuka, Yoichi |
description | Optimization of magnetic components design, such as power inductors and transformers, is most needed to improve the performance of future power electronics. However, power electronics designers face the problem of not having sufficient magnetic component models available for their designs. In this paper, we propose a method to construct a unique nonlinear magnetic component model using parametric circuit simulation and deep learning. |
doi_str_mv | 10.1109/TMAG.2023.3299110 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10195260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10195260</ieee_id><sourcerecordid>2881503002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-709d88e263e868dca2092a69e8aca5d4a61547257a1421c10bad8dd4ac209a833</originalsourceid><addsrcrecordid>eNpNkEFLAzEQhYMoWKs_QPAQ8Lw1yWbT5FharYUWBdtzGJOpprTZmt0V_PdmqQdPw3u8NzN8hNxyNuKcmYf1ajIfCSbKUSmMydYZGXAjecGYMudkwBjXhZFKXpKrptllKSvOBsRO6AxaKGYpfGOki-g719aJrmqP-xA_6BrdZwxfHdJN0-tXSHDANgVHpyG5LrT0LRy6PbShjhSipzPEI10ipJjz1-RiC_sGb_7mkGyeHtfT52L5Ml9MJ8vCCanaYsyM1xqFKlEr7R0IZgQogxocVF6C4pUci2oMXAruOHsHr332XQ6CLsshuT_tPaY6P9u0dld3KeaTVmjNK1ayDGdI-CnlUt00Cbf2mMIB0o_lzPYcbc_R9hztH8fcuTt1AiL-y3NTCcXKX_1Bbg8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881503002</pqid></control><display><type>article</type><title>A Data-Driven Inductor Modeling Technique Using Parametric Circuit Simulation and Deep Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Motomatsu, Takehiro ; Koga, Takahiro ; Shigei, Noritaka ; Yamaguchi, Masahiro ; Itagaki, Atsushi ; Ishizuka, Yoichi</creator><creatorcontrib>Motomatsu, Takehiro ; Koga, Takahiro ; Shigei, Noritaka ; Yamaguchi, Masahiro ; Itagaki, Atsushi ; Ishizuka, Yoichi</creatorcontrib><description>Optimization of magnetic components design, such as power inductors and transformers, is most needed to improve the performance of future power electronics. However, power electronics designers face the problem of not having sufficient magnetic component models available for their designs. In this paper, we propose a method to construct a unique nonlinear magnetic component model using parametric circuit simulation and deep learning.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2023.3299110</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Circuit design ; Copper loss ; Data models ; Deep learning ; Design optimization ; Equivalent circuits ; Inductors ; Integrated circuit modeling ; Magnetic circuits ; Magnetic resonance imaging ; Magnetism ; power inductor ; Vorperian loss model ; waveform image</subject><ispartof>IEEE transactions on magnetics, 2023-11, Vol.59 (11), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-709d88e263e868dca2092a69e8aca5d4a61547257a1421c10bad8dd4ac209a833</cites><orcidid>0000-0001-5830-7644 ; 0000-0002-7741-8013 ; 0000-0002-3601-7619 ; 0000-0001-6900-6214 ; 0009-0007-7130-5732</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10195260$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10195260$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Motomatsu, Takehiro</creatorcontrib><creatorcontrib>Koga, Takahiro</creatorcontrib><creatorcontrib>Shigei, Noritaka</creatorcontrib><creatorcontrib>Yamaguchi, Masahiro</creatorcontrib><creatorcontrib>Itagaki, Atsushi</creatorcontrib><creatorcontrib>Ishizuka, Yoichi</creatorcontrib><title>A Data-Driven Inductor Modeling Technique Using Parametric Circuit Simulation and Deep Learning</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Optimization of magnetic components design, such as power inductors and transformers, is most needed to improve the performance of future power electronics. However, power electronics designers face the problem of not having sufficient magnetic component models available for their designs. In this paper, we propose a method to construct a unique nonlinear magnetic component model using parametric circuit simulation and deep learning.</description><subject>Analytical models</subject><subject>Circuit design</subject><subject>Copper loss</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Design optimization</subject><subject>Equivalent circuits</subject><subject>Inductors</subject><subject>Integrated circuit modeling</subject><subject>Magnetic circuits</subject><subject>Magnetic resonance imaging</subject><subject>Magnetism</subject><subject>power inductor</subject><subject>Vorperian loss model</subject><subject>waveform image</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLAzEQhYMoWKs_QPAQ8Lw1yWbT5FharYUWBdtzGJOpprTZmt0V_PdmqQdPw3u8NzN8hNxyNuKcmYf1ajIfCSbKUSmMydYZGXAjecGYMudkwBjXhZFKXpKrptllKSvOBsRO6AxaKGYpfGOki-g719aJrmqP-xA_6BrdZwxfHdJN0-tXSHDANgVHpyG5LrT0LRy6PbShjhSipzPEI10ipJjz1-RiC_sGb_7mkGyeHtfT52L5Ml9MJ8vCCanaYsyM1xqFKlEr7R0IZgQogxocVF6C4pUci2oMXAruOHsHr332XQ6CLsshuT_tPaY6P9u0dld3KeaTVmjNK1ayDGdI-CnlUt00Cbf2mMIB0o_lzPYcbc_R9hztH8fcuTt1AiL-y3NTCcXKX_1Bbg8</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Motomatsu, Takehiro</creator><creator>Koga, Takahiro</creator><creator>Shigei, Noritaka</creator><creator>Yamaguchi, Masahiro</creator><creator>Itagaki, Atsushi</creator><creator>Ishizuka, Yoichi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5830-7644</orcidid><orcidid>https://orcid.org/0000-0002-7741-8013</orcidid><orcidid>https://orcid.org/0000-0002-3601-7619</orcidid><orcidid>https://orcid.org/0000-0001-6900-6214</orcidid><orcidid>https://orcid.org/0009-0007-7130-5732</orcidid></search><sort><creationdate>20231101</creationdate><title>A Data-Driven Inductor Modeling Technique Using Parametric Circuit Simulation and Deep Learning</title><author>Motomatsu, Takehiro ; Koga, Takahiro ; Shigei, Noritaka ; Yamaguchi, Masahiro ; Itagaki, Atsushi ; Ishizuka, Yoichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-709d88e263e868dca2092a69e8aca5d4a61547257a1421c10bad8dd4ac209a833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical models</topic><topic>Circuit design</topic><topic>Copper loss</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Design optimization</topic><topic>Equivalent circuits</topic><topic>Inductors</topic><topic>Integrated circuit modeling</topic><topic>Magnetic circuits</topic><topic>Magnetic resonance imaging</topic><topic>Magnetism</topic><topic>power inductor</topic><topic>Vorperian loss model</topic><topic>waveform image</topic><toplevel>online_resources</toplevel><creatorcontrib>Motomatsu, Takehiro</creatorcontrib><creatorcontrib>Koga, Takahiro</creatorcontrib><creatorcontrib>Shigei, Noritaka</creatorcontrib><creatorcontrib>Yamaguchi, Masahiro</creatorcontrib><creatorcontrib>Itagaki, Atsushi</creatorcontrib><creatorcontrib>Ishizuka, Yoichi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Motomatsu, Takehiro</au><au>Koga, Takahiro</au><au>Shigei, Noritaka</au><au>Yamaguchi, Masahiro</au><au>Itagaki, Atsushi</au><au>Ishizuka, Yoichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Data-Driven Inductor Modeling Technique Using Parametric Circuit Simulation and Deep Learning</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>59</volume><issue>11</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Optimization of magnetic components design, such as power inductors and transformers, is most needed to improve the performance of future power electronics. However, power electronics designers face the problem of not having sufficient magnetic component models available for their designs. In this paper, we propose a method to construct a unique nonlinear magnetic component model using parametric circuit simulation and deep learning.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2023.3299110</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5830-7644</orcidid><orcidid>https://orcid.org/0000-0002-7741-8013</orcidid><orcidid>https://orcid.org/0000-0002-3601-7619</orcidid><orcidid>https://orcid.org/0000-0001-6900-6214</orcidid><orcidid>https://orcid.org/0009-0007-7130-5732</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2023-11, Vol.59 (11), p.1-1 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_ieee_primary_10195260 |
source | IEEE Electronic Library (IEL) |
subjects | Analytical models Circuit design Copper loss Data models Deep learning Design optimization Equivalent circuits Inductors Integrated circuit modeling Magnetic circuits Magnetic resonance imaging Magnetism power inductor Vorperian loss model waveform image |
title | A Data-Driven Inductor Modeling Technique Using Parametric Circuit Simulation and Deep Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A36%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Data-Driven%20Inductor%20Modeling%20Technique%20Using%20Parametric%20Circuit%20Simulation%20and%20Deep%20Learning&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Motomatsu,%20Takehiro&rft.date=2023-11-01&rft.volume=59&rft.issue=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2023.3299110&rft_dat=%3Cproquest_RIE%3E2881503002%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881503002&rft_id=info:pmid/&rft_ieee_id=10195260&rfr_iscdi=true |