A Data-Driven Inductor Modeling Technique Using Parametric Circuit Simulation and Deep Learning

Optimization of magnetic components design, such as power inductors and transformers, is most needed to improve the performance of future power electronics. However, power electronics designers face the problem of not having sufficient magnetic component models available for their designs. In this p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2023-11, Vol.59 (11), p.1-1
Hauptverfasser: Motomatsu, Takehiro, Koga, Takahiro, Shigei, Noritaka, Yamaguchi, Masahiro, Itagaki, Atsushi, Ishizuka, Yoichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 11
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 59
creator Motomatsu, Takehiro
Koga, Takahiro
Shigei, Noritaka
Yamaguchi, Masahiro
Itagaki, Atsushi
Ishizuka, Yoichi
description Optimization of magnetic components design, such as power inductors and transformers, is most needed to improve the performance of future power electronics. However, power electronics designers face the problem of not having sufficient magnetic component models available for their designs. In this paper, we propose a method to construct a unique nonlinear magnetic component model using parametric circuit simulation and deep learning.
doi_str_mv 10.1109/TMAG.2023.3299110
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10195260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10195260</ieee_id><sourcerecordid>2881503002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-709d88e263e868dca2092a69e8aca5d4a61547257a1421c10bad8dd4ac209a833</originalsourceid><addsrcrecordid>eNpNkEFLAzEQhYMoWKs_QPAQ8Lw1yWbT5FharYUWBdtzGJOpprTZmt0V_PdmqQdPw3u8NzN8hNxyNuKcmYf1ajIfCSbKUSmMydYZGXAjecGYMudkwBjXhZFKXpKrptllKSvOBsRO6AxaKGYpfGOki-g719aJrmqP-xA_6BrdZwxfHdJN0-tXSHDANgVHpyG5LrT0LRy6PbShjhSipzPEI10ipJjz1-RiC_sGb_7mkGyeHtfT52L5Ml9MJ8vCCanaYsyM1xqFKlEr7R0IZgQogxocVF6C4pUci2oMXAruOHsHr332XQ6CLsshuT_tPaY6P9u0dld3KeaTVmjNK1ayDGdI-CnlUt00Cbf2mMIB0o_lzPYcbc_R9hztH8fcuTt1AiL-y3NTCcXKX_1Bbg8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881503002</pqid></control><display><type>article</type><title>A Data-Driven Inductor Modeling Technique Using Parametric Circuit Simulation and Deep Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Motomatsu, Takehiro ; Koga, Takahiro ; Shigei, Noritaka ; Yamaguchi, Masahiro ; Itagaki, Atsushi ; Ishizuka, Yoichi</creator><creatorcontrib>Motomatsu, Takehiro ; Koga, Takahiro ; Shigei, Noritaka ; Yamaguchi, Masahiro ; Itagaki, Atsushi ; Ishizuka, Yoichi</creatorcontrib><description>Optimization of magnetic components design, such as power inductors and transformers, is most needed to improve the performance of future power electronics. However, power electronics designers face the problem of not having sufficient magnetic component models available for their designs. In this paper, we propose a method to construct a unique nonlinear magnetic component model using parametric circuit simulation and deep learning.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2023.3299110</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Circuit design ; Copper loss ; Data models ; Deep learning ; Design optimization ; Equivalent circuits ; Inductors ; Integrated circuit modeling ; Magnetic circuits ; Magnetic resonance imaging ; Magnetism ; power inductor ; Vorperian loss model ; waveform image</subject><ispartof>IEEE transactions on magnetics, 2023-11, Vol.59 (11), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-709d88e263e868dca2092a69e8aca5d4a61547257a1421c10bad8dd4ac209a833</cites><orcidid>0000-0001-5830-7644 ; 0000-0002-7741-8013 ; 0000-0002-3601-7619 ; 0000-0001-6900-6214 ; 0009-0007-7130-5732</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10195260$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10195260$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Motomatsu, Takehiro</creatorcontrib><creatorcontrib>Koga, Takahiro</creatorcontrib><creatorcontrib>Shigei, Noritaka</creatorcontrib><creatorcontrib>Yamaguchi, Masahiro</creatorcontrib><creatorcontrib>Itagaki, Atsushi</creatorcontrib><creatorcontrib>Ishizuka, Yoichi</creatorcontrib><title>A Data-Driven Inductor Modeling Technique Using Parametric Circuit Simulation and Deep Learning</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Optimization of magnetic components design, such as power inductors and transformers, is most needed to improve the performance of future power electronics. However, power electronics designers face the problem of not having sufficient magnetic component models available for their designs. In this paper, we propose a method to construct a unique nonlinear magnetic component model using parametric circuit simulation and deep learning.</description><subject>Analytical models</subject><subject>Circuit design</subject><subject>Copper loss</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Design optimization</subject><subject>Equivalent circuits</subject><subject>Inductors</subject><subject>Integrated circuit modeling</subject><subject>Magnetic circuits</subject><subject>Magnetic resonance imaging</subject><subject>Magnetism</subject><subject>power inductor</subject><subject>Vorperian loss model</subject><subject>waveform image</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLAzEQhYMoWKs_QPAQ8Lw1yWbT5FharYUWBdtzGJOpprTZmt0V_PdmqQdPw3u8NzN8hNxyNuKcmYf1ajIfCSbKUSmMydYZGXAjecGYMudkwBjXhZFKXpKrptllKSvOBsRO6AxaKGYpfGOki-g719aJrmqP-xA_6BrdZwxfHdJN0-tXSHDANgVHpyG5LrT0LRy6PbShjhSipzPEI10ipJjz1-RiC_sGb_7mkGyeHtfT52L5Ml9MJ8vCCanaYsyM1xqFKlEr7R0IZgQogxocVF6C4pUci2oMXAruOHsHr332XQ6CLsshuT_tPaY6P9u0dld3KeaTVmjNK1ayDGdI-CnlUt00Cbf2mMIB0o_lzPYcbc_R9hztH8fcuTt1AiL-y3NTCcXKX_1Bbg8</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Motomatsu, Takehiro</creator><creator>Koga, Takahiro</creator><creator>Shigei, Noritaka</creator><creator>Yamaguchi, Masahiro</creator><creator>Itagaki, Atsushi</creator><creator>Ishizuka, Yoichi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5830-7644</orcidid><orcidid>https://orcid.org/0000-0002-7741-8013</orcidid><orcidid>https://orcid.org/0000-0002-3601-7619</orcidid><orcidid>https://orcid.org/0000-0001-6900-6214</orcidid><orcidid>https://orcid.org/0009-0007-7130-5732</orcidid></search><sort><creationdate>20231101</creationdate><title>A Data-Driven Inductor Modeling Technique Using Parametric Circuit Simulation and Deep Learning</title><author>Motomatsu, Takehiro ; Koga, Takahiro ; Shigei, Noritaka ; Yamaguchi, Masahiro ; Itagaki, Atsushi ; Ishizuka, Yoichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-709d88e263e868dca2092a69e8aca5d4a61547257a1421c10bad8dd4ac209a833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical models</topic><topic>Circuit design</topic><topic>Copper loss</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Design optimization</topic><topic>Equivalent circuits</topic><topic>Inductors</topic><topic>Integrated circuit modeling</topic><topic>Magnetic circuits</topic><topic>Magnetic resonance imaging</topic><topic>Magnetism</topic><topic>power inductor</topic><topic>Vorperian loss model</topic><topic>waveform image</topic><toplevel>online_resources</toplevel><creatorcontrib>Motomatsu, Takehiro</creatorcontrib><creatorcontrib>Koga, Takahiro</creatorcontrib><creatorcontrib>Shigei, Noritaka</creatorcontrib><creatorcontrib>Yamaguchi, Masahiro</creatorcontrib><creatorcontrib>Itagaki, Atsushi</creatorcontrib><creatorcontrib>Ishizuka, Yoichi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Motomatsu, Takehiro</au><au>Koga, Takahiro</au><au>Shigei, Noritaka</au><au>Yamaguchi, Masahiro</au><au>Itagaki, Atsushi</au><au>Ishizuka, Yoichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Data-Driven Inductor Modeling Technique Using Parametric Circuit Simulation and Deep Learning</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>59</volume><issue>11</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Optimization of magnetic components design, such as power inductors and transformers, is most needed to improve the performance of future power electronics. However, power electronics designers face the problem of not having sufficient magnetic component models available for their designs. In this paper, we propose a method to construct a unique nonlinear magnetic component model using parametric circuit simulation and deep learning.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2023.3299110</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5830-7644</orcidid><orcidid>https://orcid.org/0000-0002-7741-8013</orcidid><orcidid>https://orcid.org/0000-0002-3601-7619</orcidid><orcidid>https://orcid.org/0000-0001-6900-6214</orcidid><orcidid>https://orcid.org/0009-0007-7130-5732</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2023-11, Vol.59 (11), p.1-1
issn 0018-9464
1941-0069
language eng
recordid cdi_ieee_primary_10195260
source IEEE Electronic Library (IEL)
subjects Analytical models
Circuit design
Copper loss
Data models
Deep learning
Design optimization
Equivalent circuits
Inductors
Integrated circuit modeling
Magnetic circuits
Magnetic resonance imaging
Magnetism
power inductor
Vorperian loss model
waveform image
title A Data-Driven Inductor Modeling Technique Using Parametric Circuit Simulation and Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A36%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Data-Driven%20Inductor%20Modeling%20Technique%20Using%20Parametric%20Circuit%20Simulation%20and%20Deep%20Learning&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Motomatsu,%20Takehiro&rft.date=2023-11-01&rft.volume=59&rft.issue=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2023.3299110&rft_dat=%3Cproquest_RIE%3E2881503002%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881503002&rft_id=info:pmid/&rft_ieee_id=10195260&rfr_iscdi=true