A Data-Driven Inductor Modeling Technique Using Parametric Circuit Simulation and Deep Learning

Optimization of magnetic components design, such as power inductors and transformers, is most needed to improve the performance of future power electronics. However, power electronics designers face the problem of not having sufficient magnetic component models available for their designs. In this p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2023-11, Vol.59 (11), p.1-1
Hauptverfasser: Motomatsu, Takehiro, Koga, Takahiro, Shigei, Noritaka, Yamaguchi, Masahiro, Itagaki, Atsushi, Ishizuka, Yoichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optimization of magnetic components design, such as power inductors and transformers, is most needed to improve the performance of future power electronics. However, power electronics designers face the problem of not having sufficient magnetic component models available for their designs. In this paper, we propose a method to construct a unique nonlinear magnetic component model using parametric circuit simulation and deep learning.
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2023.3299110