Hardware-Software Co-Optimization of Long-Latency Stochastic Computing

Stochastic computing (SC) is an emerging paradigm that offers hardware-efficient solutions for developing low-cost and noise-robust architectures. In SC, deterministic logic systems are employed along with bit-stream sources to process scalar values. However, using long bit-streams introduces challe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE embedded systems letters 2023-12, Vol.15 (4), p.190-193
Hauptverfasser: Aygun, Sercan, Kouhalvandi, Lida, Najafi, M. Hassan, Ozoguz, Serdar, Gunes, Ece Olcay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 193
container_issue 4
container_start_page 190
container_title IEEE embedded systems letters
container_volume 15
creator Aygun, Sercan
Kouhalvandi, Lida
Najafi, M. Hassan
Ozoguz, Serdar
Gunes, Ece Olcay
description Stochastic computing (SC) is an emerging paradigm that offers hardware-efficient solutions for developing low-cost and noise-robust architectures. In SC, deterministic logic systems are employed along with bit-stream sources to process scalar values. However, using long bit-streams introduces challenges, such as increased latency and significant energy consumption. To address these issues, we present an optimization-oriented approach for modeling and sizing new logic gates, which results in optimal latency. The optimization process is automated using hardware-software cooperation by integrating Cadence and MATLAB environments. Initially, we optimize the circuit topology by leveraging the design parameters of two-input basic logic gates. This optimization is performed using a multiobjective approach based on a deep neural network. Subsequently, we employ the proposed gates to demonstrate favorable solutions targeting SC-based operations.
doi_str_mv 10.1109/LES.2023.3298734
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10194307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10194307</ieee_id><sourcerecordid>2895006903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-146321fcaaa2ddbc41fa92c8f425073850bca6c236092168a3317fcc705fc42b3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGrvHjwseE7N926OUlorLPRQPYc0TWqK3axJitRfb5YWcS4zh-edGR4A7jGaYozkUztfTwkidEqJbGrKrsAIS0YhEjW-_psFvQWTlPaoFGc1p3wEFksdt986WrgOLg9DNQtw1Wd_8D86-9BVwVVt6Haw1dl25lStczAfOmVvCnroj9l3uztw4_RnspNLH4P3xfxttoTt6uV19txCQ3mTIWaCEuyM1ppstxvDsNOSmMYxwlFNG442RgtDqECSYNFoSnHtjKkRd4aRDR2Dx_PePoavo01Z7cMxduWkIo3kCAmJaKHQmTIxpBStU330Bx1PCiM1CFNFmBqEqYuwEnk4R7y19h8-qCuf_QLYFGXz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895006903</pqid></control><display><type>article</type><title>Hardware-Software Co-Optimization of Long-Latency Stochastic Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Aygun, Sercan ; Kouhalvandi, Lida ; Najafi, M. Hassan ; Ozoguz, Serdar ; Gunes, Ece Olcay</creator><creatorcontrib>Aygun, Sercan ; Kouhalvandi, Lida ; Najafi, M. Hassan ; Ozoguz, Serdar ; Gunes, Ece Olcay</creatorcontrib><description>Stochastic computing (SC) is an emerging paradigm that offers hardware-efficient solutions for developing low-cost and noise-robust architectures. In SC, deterministic logic systems are employed along with bit-stream sources to process scalar values. However, using long bit-streams introduces challenges, such as increased latency and significant energy consumption. To address these issues, we present an optimization-oriented approach for modeling and sizing new logic gates, which results in optimal latency. The optimization process is automated using hardware-software cooperation by integrating Cadence and MATLAB environments. Initially, we optimize the circuit topology by leveraging the design parameters of two-input basic logic gates. This optimization is performed using a multiobjective approach based on a deep neural network. Subsequently, we employ the proposed gates to demonstrate favorable solutions targeting SC-based operations.</description><identifier>ISSN: 1943-0663</identifier><identifier>EISSN: 1943-0671</identifier><identifier>DOI: 10.1109/LES.2023.3298734</identifier><identifier>CODEN: ESLMAP</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analog optimization ; Artificial neural networks ; Circuit design ; co-processing ; Computation ; Design parameters ; Energy consumption ; Gates (circuits) ; Geometry ; Hardware ; latency reduction ; Libraries ; Logic circuits ; Logic gates ; Power demand ; Software ; stochastic computing (SC) ; Stochastic processes ; Topology optimization ; Transistors</subject><ispartof>IEEE embedded systems letters, 2023-12, Vol.15 (4), p.190-193</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-146321fcaaa2ddbc41fa92c8f425073850bca6c236092168a3317fcc705fc42b3</citedby><cites>FETCH-LOGICAL-c358t-146321fcaaa2ddbc41fa92c8f425073850bca6c236092168a3317fcc705fc42b3</cites><orcidid>0000-0002-4615-7914 ; 0000-0002-4655-6229 ; 0000-0001-9186-7424 ; 0000-0002-0915-1804 ; 0000-0003-0693-4114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10194307$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10194307$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Aygun, Sercan</creatorcontrib><creatorcontrib>Kouhalvandi, Lida</creatorcontrib><creatorcontrib>Najafi, M. Hassan</creatorcontrib><creatorcontrib>Ozoguz, Serdar</creatorcontrib><creatorcontrib>Gunes, Ece Olcay</creatorcontrib><title>Hardware-Software Co-Optimization of Long-Latency Stochastic Computing</title><title>IEEE embedded systems letters</title><addtitle>LES</addtitle><description>Stochastic computing (SC) is an emerging paradigm that offers hardware-efficient solutions for developing low-cost and noise-robust architectures. In SC, deterministic logic systems are employed along with bit-stream sources to process scalar values. However, using long bit-streams introduces challenges, such as increased latency and significant energy consumption. To address these issues, we present an optimization-oriented approach for modeling and sizing new logic gates, which results in optimal latency. The optimization process is automated using hardware-software cooperation by integrating Cadence and MATLAB environments. Initially, we optimize the circuit topology by leveraging the design parameters of two-input basic logic gates. This optimization is performed using a multiobjective approach based on a deep neural network. Subsequently, we employ the proposed gates to demonstrate favorable solutions targeting SC-based operations.</description><subject>Analog optimization</subject><subject>Artificial neural networks</subject><subject>Circuit design</subject><subject>co-processing</subject><subject>Computation</subject><subject>Design parameters</subject><subject>Energy consumption</subject><subject>Gates (circuits)</subject><subject>Geometry</subject><subject>Hardware</subject><subject>latency reduction</subject><subject>Libraries</subject><subject>Logic circuits</subject><subject>Logic gates</subject><subject>Power demand</subject><subject>Software</subject><subject>stochastic computing (SC)</subject><subject>Stochastic processes</subject><subject>Topology optimization</subject><subject>Transistors</subject><issn>1943-0663</issn><issn>1943-0671</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWGrvHjwseE7N926OUlorLPRQPYc0TWqK3axJitRfb5YWcS4zh-edGR4A7jGaYozkUztfTwkidEqJbGrKrsAIS0YhEjW-_psFvQWTlPaoFGc1p3wEFksdt986WrgOLg9DNQtw1Wd_8D86-9BVwVVt6Haw1dl25lStczAfOmVvCnroj9l3uztw4_RnspNLH4P3xfxttoTt6uV19txCQ3mTIWaCEuyM1ppstxvDsNOSmMYxwlFNG442RgtDqECSYNFoSnHtjKkRd4aRDR2Dx_PePoavo01Z7cMxduWkIo3kCAmJaKHQmTIxpBStU330Bx1PCiM1CFNFmBqEqYuwEnk4R7y19h8-qCuf_QLYFGXz</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Aygun, Sercan</creator><creator>Kouhalvandi, Lida</creator><creator>Najafi, M. Hassan</creator><creator>Ozoguz, Serdar</creator><creator>Gunes, Ece Olcay</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4615-7914</orcidid><orcidid>https://orcid.org/0000-0002-4655-6229</orcidid><orcidid>https://orcid.org/0000-0001-9186-7424</orcidid><orcidid>https://orcid.org/0000-0002-0915-1804</orcidid><orcidid>https://orcid.org/0000-0003-0693-4114</orcidid></search><sort><creationdate>202312</creationdate><title>Hardware-Software Co-Optimization of Long-Latency Stochastic Computing</title><author>Aygun, Sercan ; Kouhalvandi, Lida ; Najafi, M. Hassan ; Ozoguz, Serdar ; Gunes, Ece Olcay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-146321fcaaa2ddbc41fa92c8f425073850bca6c236092168a3317fcc705fc42b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analog optimization</topic><topic>Artificial neural networks</topic><topic>Circuit design</topic><topic>co-processing</topic><topic>Computation</topic><topic>Design parameters</topic><topic>Energy consumption</topic><topic>Gates (circuits)</topic><topic>Geometry</topic><topic>Hardware</topic><topic>latency reduction</topic><topic>Libraries</topic><topic>Logic circuits</topic><topic>Logic gates</topic><topic>Power demand</topic><topic>Software</topic><topic>stochastic computing (SC)</topic><topic>Stochastic processes</topic><topic>Topology optimization</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aygun, Sercan</creatorcontrib><creatorcontrib>Kouhalvandi, Lida</creatorcontrib><creatorcontrib>Najafi, M. Hassan</creatorcontrib><creatorcontrib>Ozoguz, Serdar</creatorcontrib><creatorcontrib>Gunes, Ece Olcay</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE embedded systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aygun, Sercan</au><au>Kouhalvandi, Lida</au><au>Najafi, M. Hassan</au><au>Ozoguz, Serdar</au><au>Gunes, Ece Olcay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hardware-Software Co-Optimization of Long-Latency Stochastic Computing</atitle><jtitle>IEEE embedded systems letters</jtitle><stitle>LES</stitle><date>2023-12</date><risdate>2023</risdate><volume>15</volume><issue>4</issue><spage>190</spage><epage>193</epage><pages>190-193</pages><issn>1943-0663</issn><eissn>1943-0671</eissn><coden>ESLMAP</coden><abstract>Stochastic computing (SC) is an emerging paradigm that offers hardware-efficient solutions for developing low-cost and noise-robust architectures. In SC, deterministic logic systems are employed along with bit-stream sources to process scalar values. However, using long bit-streams introduces challenges, such as increased latency and significant energy consumption. To address these issues, we present an optimization-oriented approach for modeling and sizing new logic gates, which results in optimal latency. The optimization process is automated using hardware-software cooperation by integrating Cadence and MATLAB environments. Initially, we optimize the circuit topology by leveraging the design parameters of two-input basic logic gates. This optimization is performed using a multiobjective approach based on a deep neural network. Subsequently, we employ the proposed gates to demonstrate favorable solutions targeting SC-based operations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LES.2023.3298734</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-4615-7914</orcidid><orcidid>https://orcid.org/0000-0002-4655-6229</orcidid><orcidid>https://orcid.org/0000-0001-9186-7424</orcidid><orcidid>https://orcid.org/0000-0002-0915-1804</orcidid><orcidid>https://orcid.org/0000-0003-0693-4114</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1943-0663
ispartof IEEE embedded systems letters, 2023-12, Vol.15 (4), p.190-193
issn 1943-0663
1943-0671
language eng
recordid cdi_ieee_primary_10194307
source IEEE Electronic Library (IEL)
subjects Analog optimization
Artificial neural networks
Circuit design
co-processing
Computation
Design parameters
Energy consumption
Gates (circuits)
Geometry
Hardware
latency reduction
Libraries
Logic circuits
Logic gates
Power demand
Software
stochastic computing (SC)
Stochastic processes
Topology optimization
Transistors
title Hardware-Software Co-Optimization of Long-Latency Stochastic Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A05%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hardware-Software%20Co-Optimization%20of%20Long-Latency%20Stochastic%20Computing&rft.jtitle=IEEE%20embedded%20systems%20letters&rft.au=Aygun,%20Sercan&rft.date=2023-12&rft.volume=15&rft.issue=4&rft.spage=190&rft.epage=193&rft.pages=190-193&rft.issn=1943-0663&rft.eissn=1943-0671&rft.coden=ESLMAP&rft_id=info:doi/10.1109/LES.2023.3298734&rft_dat=%3Cproquest_RIE%3E2895006903%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895006903&rft_id=info:pmid/&rft_ieee_id=10194307&rfr_iscdi=true