Hardware-Software Co-Optimization of Long-Latency Stochastic Computing
Stochastic computing (SC) is an emerging paradigm that offers hardware-efficient solutions for developing low-cost and noise-robust architectures. In SC, deterministic logic systems are employed along with bit-stream sources to process scalar values. However, using long bit-streams introduces challe...
Gespeichert in:
Veröffentlicht in: | IEEE embedded systems letters 2023-12, Vol.15 (4), p.190-193 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Stochastic computing (SC) is an emerging paradigm that offers hardware-efficient solutions for developing low-cost and noise-robust architectures. In SC, deterministic logic systems are employed along with bit-stream sources to process scalar values. However, using long bit-streams introduces challenges, such as increased latency and significant energy consumption. To address these issues, we present an optimization-oriented approach for modeling and sizing new logic gates, which results in optimal latency. The optimization process is automated using hardware-software cooperation by integrating Cadence and MATLAB environments. Initially, we optimize the circuit topology by leveraging the design parameters of two-input basic logic gates. This optimization is performed using a multiobjective approach based on a deep neural network. Subsequently, we employ the proposed gates to demonstrate favorable solutions targeting SC-based operations. |
---|---|
ISSN: | 1943-0663 1943-0671 |
DOI: | 10.1109/LES.2023.3298734 |