SWAN: service differentiation in stateless wireless ad hoc networks

We propose SWAN, a stateless network model which uses distributed control algorithms to deliver service differentiation in mobile wireless ad hoc networks in a simple, scalable and robust manner. We use rate control for UDP and TCP best-effort traffic, and sender-based admission control for UDP real...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gahng-Seop Ahn, Campbell, A.T., Veres, A., Li-Hsiang Sun
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose SWAN, a stateless network model which uses distributed control algorithms to deliver service differentiation in mobile wireless ad hoc networks in a simple, scalable and robust manner. We use rate control for UDP and TCP best-effort traffic, and sender-based admission control for UDP real-time traffic. SWAN uses explicit congestion notification (ECN) to dynamically regulate admitted real-time traffic in the face of network dynamics brought on by mobility or traffic overload conditions. We use the term "soft" real-time services to indicate that real-time sessions could be regulated or dropped due to mobility or excessive traffic overloading at mobile wireless routers. SWAN is designed to limit such conditions, however. A novel aspect of SWAN is that it does not require the support of a QOS-capable MAC. Rather, soft real-time services are built using existing best effort wireless MAC technology. Simulation, analysis, and results from an experimental wireless testbed show that real-time applications experience low and stable delays under various multi-hop, traffic and mobility conditions. The wireless testbed and ns-2 simulator source code are available from the Web (comet.columbia.edu/swan).
ISSN:0743-166X
2641-9874
DOI:10.1109/INFCOM.2002.1019290