EEG-Based Parkinson's Disease Recognition Via Attention-based Sparse Graph Convolutional Neural Network
Parkinson's disease (PD) is a complicated neurological ailment that affects both the physical and mental wellness of elderly individuals which makes it problematic to diagnose in its initial stages. Electroencephalogram (EEG) promises to be an efficient and cost-effective method for promptly de...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2023-11, Vol.PP (11), p.1-13 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Parkinson's disease (PD) is a complicated neurological ailment that affects both the physical and mental wellness of elderly individuals which makes it problematic to diagnose in its initial stages. Electroencephalogram (EEG) promises to be an efficient and cost-effective method for promptly detecting cognitive impairment in PD. Nevertheless, prevailing diagnostic practices utilizing EEG features have failed to examine the functional connectivity among EEG channels and the response of associated brain areas causing an unsatisfactory level of precision. Here, we construct an attention-based sparse graph convolutional neural network (ASGCNN) for diagnosing PD. Our ASGCNN model uses a graph structure to represent channel relationships, the attention mechanism for selecting channels, and the L1 norm to capture channel sparsity. We conduct extensive experiments on the publicly available PD auditory oddball dataset, which consists of 24 PD patients (under ON/OFF drug status) and 24 matched controls, to validate the effectiveness of our method. Our results show that the proposed method provides better results compared to the publicly available baselines. The achieved scores for Recall, Precision, F1-score, Accuracy and Kappa measures are 90.36%, 88.43%, 88.41%, 87.67%, and 75.24%, respectively. Our study reveals that the frontal and temporal lobes show significant differences between PD patients and healthy individuals. In addition, EEG features extracted by ASGCNN demonstrate significant asymmetry in the frontal lobe among PD patients. These findings can offer a basis for the establishment of a clinical system for intelligent diagnosis of PD by using auditory cognitive impairment features. |
---|---|
ISSN: | 2168-2194 2168-2208 |
DOI: | 10.1109/JBHI.2023.3292452 |