Scalable Empirical Dynamic Modeling with Parallel Computing and Approximate k-NN Search
Empirical Dynamic Modeling (EDM) is a mathematical framework for modeling and predicting non-linear time series data. Although EDM is increasingly adopted in various research fields, its application to large-scale data has been limited due to its high computational cost. This article presents kEDM,...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Empirical Dynamic Modeling (EDM) is a mathematical framework for modeling and predicting non-linear time series data. Although EDM is increasingly adopted in various research fields, its application to large-scale data has been limited due to its high computational cost. This article presents kEDM, a high-performance implementation of EDM for analyzing large-scale time series datasets. kEDM adopts the Kokkos performance-portable programming model to efficiently run on both CPU and GPU while sharing a single code base. We also conduct hardware-specific optimization of performance-critical kernels. kEDM achieved up to 6.58× speedup in pairwise causal inference of real-world biology datasets compared to an existing EDM implementation. Furthermore, we integrate multiple approximate k-NN search algorithms into EDM to enable the analysis of extremely large datasets that were intractable with conventional EDM based on exhaustive k-NN search. EDM-based time series forecast enhanced with approximate k-NN search demonstrated up to 790× speedup compared to conventional Simplex projection with less than 1% increase in MAPE. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2023.3289836 |