Reconfigurable Holographic Surfaces for Ultra-Massive MIMO in 6G: Practical Design, Optimization and Implementation
Ultra-massive multiple-input multiple-output (MIMO) is expected to be one of the key enablers in the forthcoming 6G networks to handle various user demands by exploiting spatial diversity. In this paper, a new paradigm termed holographic radio is considered for ultra-massive MIMO via integrating num...
Gespeichert in:
Veröffentlicht in: | IEEE journal on selected areas in communications 2023-08, Vol.41 (8), p.1-1 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ultra-massive multiple-input multiple-output (MIMO) is expected to be one of the key enablers in the forthcoming 6G networks to handle various user demands by exploiting spatial diversity. In this paper, a new paradigm termed holographic radio is considered for ultra-massive MIMO via integrating numerous antenna elements into a compact space, thereby achieving a spatially quasi-continuous aperture and realizing high beampattern gain. We propose a practical path to implement holographic radio by a novel metasurface-based antenna called a reconfigurable holographic surface (RHS). Specifically, the RHS is capable of holographic beamforming over the spatially quasi-continuous apertures by incorporating densely packed tunable metamaterial elements with low power consumption. To enhance the performance of the RHS as an antenna array for achieving ultra-massive MIMO, a holographic beamforming optimization algorithm is developed for beampattern gain maximization based on the hardware design and full-wave analyses of RHSs. We then implement a prototype of an RHS and build an RHS-aided communication platform to further substantiate the feasibility of RHS-enabled holographic radio. Both simulation and experimental results verify the effectiveness of the proposed holographic beamforming optimization algorithm. It is also proved that the RHS-aided communication platform is capable of supporting real-time transmission of high-definition video. |
---|---|
ISSN: | 0733-8716 1558-0008 |
DOI: | 10.1109/JSAC.2023.3288248 |