TURBULENCE: Complexity-Effective Out-of-Order Execution on GPU With Distance-Based ISA
A graphics processing unit (GPU) is a processor that achieves high throughput by exploiting data parallelism. We found that many GPU workloads also contain instruction-level parallelism that can be extracted through out-of-order execution to provide additional performance improvement opportunities....
Gespeichert in:
Veröffentlicht in: | IEEE computer architecture letters 2024-07, Vol.23 (2), p.175-178 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A graphics processing unit (GPU) is a processor that achieves high throughput by exploiting data parallelism. We found that many GPU workloads also contain instruction-level parallelism that can be extracted through out-of-order execution to provide additional performance improvement opportunities. We propose the TURBULENCE architecture for very low-cost out-of-order execution on GPUs. TURBULENCE consists of a novel ISA that introduces the concept of referencing operands by inter-instruction distance instead of register numbers, and a novel microarchitecture that executes the novel ISA. This distance-based operand has the property of not causing false dependencies. By exploiting this property, we achieve cost-effective out-of-order execution on GPUs without introducing expensive hardware such as a rename logic and a load-store queue. Simulation results show that TURBULENCE improves performance by 17.6% without increasing energy consumption over an existing GPU. |
---|---|
ISSN: | 1556-6056 1556-6064 |
DOI: | 10.1109/LCA.2023.3289317 |