Locating X-ray coronary angiogram keyframes via long short-term spatiotemporal attention with image-to-patch contrastive learning
Locating the start, apex and end keyframes of moving contrast agents for keyframe counting in X-ray coronary angiography (XCA) is very important for the diagnosis and treatment of cardiovascular diseases. To locate these keyframes from the class-imbalanced and boundary-agnostic foreground vessel act...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2024-01, Vol.43 (1), p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Locating the start, apex and end keyframes of moving contrast agents for keyframe counting in X-ray coronary angiography (XCA) is very important for the diagnosis and treatment of cardiovascular diseases. To locate these keyframes from the class-imbalanced and boundary-agnostic foreground vessel actions that overlap complex backgrounds, we propose long short-term spatiotemporal attention by integrating a convolutional long short-term memory (CLSTM) network into a multiscale Transformer to learn the segment-and sequence-level dependencies in the consecutive-frame-based deep features. Image-to-patch contrastive learning is further embedded between the CLSTM-based long-term spatiotemporal attention and Transformer-based short-term attention modules. The imagewise contrastive module reuses the long-term attention to contrast image-level foreground/background of XCA sequence, while patchwise contrastive projection selects the random patches of backgrounds as convolution kernels to project foreground/background frames into different latent spaces. A new XCA video dataset is collected to evaluate the proposed method. The experimental results show that the proposed method achieves a mAP (mean average precision) of 72.45% and a F-score of 0.8296, considerably outperforming the state-of-the-art methods. The source code and dataset are available at https://github.com/Binjie-Qin/STA-IPCon. |
---|---|
ISSN: | 0278-0062 1558-254X 1558-254X |
DOI: | 10.1109/TMI.2023.3286859 |