Bounding the Distance to Unsafe Sets With Convex Optimization

This work proposes an algorithm to bound the minimum distance between points on trajectories of a dynamical system and points on an unsafe set. Prior work on certifying safety of trajectories includes barrier and density methods, which do not provide a margin of proximity to the unsafe set in terms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2023-12, Vol.68 (12), p.1-15
Hauptverfasser: Miller, Jared, Sznaier, Mario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work proposes an algorithm to bound the minimum distance between points on trajectories of a dynamical system and points on an unsafe set. Prior work on certifying safety of trajectories includes barrier and density methods, which do not provide a margin of proximity to the unsafe set in terms of distance. The distance estimation problem is relaxed to a Monge-Kantorovich-type optimal transport problem based on existing occupation-measure methods of peak estimation. Specialized programs may be developed for polyhedral norm distances (e.g. L1 and Linfinity) and for scenarios where a shape is traveling along trajectories (e.g. rigid body motion). The distance estimation problem will be correlatively sparse when the distance objective is separable.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2023.3285862