Nonlinear Dynamic States' Estimation and Prediction Using Polynomial Predictive Modeling Estimation et prédiction d'états dynamiques non linéaires à l'aide d'une modélisation prédictive polynomiale
In motion-control applications, noise and dynamic nonlinearities influence the performance of control systems and lead to unpredictable disturbances. The dc servo motors used in motion control applications should have precise control methods to achieve the desired responses. Therefore, predicting an...
Gespeichert in:
Veröffentlicht in: | Canadian journal of electrical and computer engineering 2023-06, p.1-0 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 0 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Canadian journal of electrical and computer engineering |
container_volume | |
creator | Sivaraman, Dileep Ongwattanakul, Songpol Suthakorn, Jackrit Pillai, Branesh M. |
description | In motion-control applications, noise and dynamic nonlinearities influence the performance of control systems and lead to unpredictable disturbances. The dc servo motors used in motion control applications should have precise control methods to achieve the desired responses. Therefore, predicting and compensating for the disturbance are essential for increasing system robustness and achieving high precision and fast reaction. This article introduces the polynomial predictive filtering (PPF) method to estimate the states of a system using polynomial extrapolation of consecutive and evenly spaced sensor data. Acceleration-/torque-based experiments are conducted to validate the effectiveness and viability of the proposed method. The difference between the real-time sensor data and the PPF-based predicted value shows a standard deviation of less than 0.15 and 1 \times 10^{-5} for the velocity and disturbance torque, respectively. |
doi_str_mv | 10.1109/ICJECE.2023.3260830 |
format | Article |
fullrecord | <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10146201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10146201</ieee_id><sourcerecordid>10146201</sourcerecordid><originalsourceid>FETCH-LOGICAL-i106t-51bfaa3b3af8e880b7c1b911adeaab4e46b14672f08fe6ec630aaa661e90c4643</originalsourceid><addsrcrecordid>eNpNj01OwzAQhS0kJMrPCWDhXVcpdpy6zhKFAEUFKkHX1SSeIKPEKXGK1NuwzTmy5FKYFipWo5k333szhJxzNuKcxZfT5D5N0lHIQjESoWRKsAMyCGUcBXyixBE5du6NMaHYOBqQr8falsYiNPR6Y6EyOX1uoUU3pKlrTQWtqS0Fq-m8QW3ybbtwxr7SeV1ubF0ZKPfaB9KHWmP5I__DsaWrpu_-cD3sO5_hqN4mvq_RUevnHus7MI1v-09aDsFo9Mtri7Sqdd-Vxu389mY-b7W_Ak_JYQGlw7PfekIWN-lLchfMnm6nydUsMJzJNhjzrAAQmYBCoVIsm-Q8izkHjQBZhJHMeCQnYcFUgRJzKRgASMkxZnkkI3FCLna-BhGXq8a_2WyWnHkqZFx8AyMLgLU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonlinear Dynamic States' Estimation and Prediction Using Polynomial Predictive Modeling Estimation et prédiction d'états dynamiques non linéaires à l'aide d'une modélisation prédictive polynomiale</title><source>IEEE Electronic Library (IEL)</source><creator>Sivaraman, Dileep ; Ongwattanakul, Songpol ; Suthakorn, Jackrit ; Pillai, Branesh M.</creator><creatorcontrib>Sivaraman, Dileep ; Ongwattanakul, Songpol ; Suthakorn, Jackrit ; Pillai, Branesh M.</creatorcontrib><description><![CDATA[In motion-control applications, noise and dynamic nonlinearities influence the performance of control systems and lead to unpredictable disturbances. The dc servo motors used in motion control applications should have precise control methods to achieve the desired responses. Therefore, predicting and compensating for the disturbance are essential for increasing system robustness and achieving high precision and fast reaction. This article introduces the polynomial predictive filtering (PPF) method to estimate the states of a system using polynomial extrapolation of consecutive and evenly spaced sensor data. Acceleration-/torque-based experiments are conducted to validate the effectiveness and viability of the proposed method. The difference between the real-time sensor data and the PPF-based predicted value shows a standard deviation of less than <inline-formula> <tex-math notation="LaTeX">0.15</tex-math> </inline-formula> and <inline-formula> <tex-math notation="LaTeX">1</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">10^{-5}</tex-math> </inline-formula> for the velocity and disturbance torque, respectively.]]></description><identifier>EISSN: 2694-1783</identifier><identifier>DOI: 10.1109/ICJECE.2023.3260830</identifier><identifier>CODEN: ICJEAP</identifier><language>eng</language><publisher>IEEE</publisher><subject>DC motors ; Disturbance observer (DOB) ; Extrapolation ; Mathematical models ; motion control ; Noise measurement ; polynomial extrapolation ; Predictive models ; reaction torque observer (RTOB) ; state estimation ; Torque ; Uncertainty</subject><ispartof>Canadian journal of electrical and computer engineering, 2023-06, p.1-0</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4850-5812 ; 0000-0003-1333-3982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10146201$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10146201$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sivaraman, Dileep</creatorcontrib><creatorcontrib>Ongwattanakul, Songpol</creatorcontrib><creatorcontrib>Suthakorn, Jackrit</creatorcontrib><creatorcontrib>Pillai, Branesh M.</creatorcontrib><title>Nonlinear Dynamic States' Estimation and Prediction Using Polynomial Predictive Modeling Estimation et prédiction d'états dynamiques non linéaires à l'aide d'une modélisation prédictive polynomiale</title><title>Canadian journal of electrical and computer engineering</title><addtitle>ICJECE</addtitle><description><![CDATA[In motion-control applications, noise and dynamic nonlinearities influence the performance of control systems and lead to unpredictable disturbances. The dc servo motors used in motion control applications should have precise control methods to achieve the desired responses. Therefore, predicting and compensating for the disturbance are essential for increasing system robustness and achieving high precision and fast reaction. This article introduces the polynomial predictive filtering (PPF) method to estimate the states of a system using polynomial extrapolation of consecutive and evenly spaced sensor data. Acceleration-/torque-based experiments are conducted to validate the effectiveness and viability of the proposed method. The difference between the real-time sensor data and the PPF-based predicted value shows a standard deviation of less than <inline-formula> <tex-math notation="LaTeX">0.15</tex-math> </inline-formula> and <inline-formula> <tex-math notation="LaTeX">1</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">10^{-5}</tex-math> </inline-formula> for the velocity and disturbance torque, respectively.]]></description><subject>DC motors</subject><subject>Disturbance observer (DOB)</subject><subject>Extrapolation</subject><subject>Mathematical models</subject><subject>motion control</subject><subject>Noise measurement</subject><subject>polynomial extrapolation</subject><subject>Predictive models</subject><subject>reaction torque observer (RTOB)</subject><subject>state estimation</subject><subject>Torque</subject><subject>Uncertainty</subject><issn>2694-1783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNj01OwzAQhS0kJMrPCWDhXVcpdpy6zhKFAEUFKkHX1SSeIKPEKXGK1NuwzTmy5FKYFipWo5k333szhJxzNuKcxZfT5D5N0lHIQjESoWRKsAMyCGUcBXyixBE5du6NMaHYOBqQr8falsYiNPR6Y6EyOX1uoUU3pKlrTQWtqS0Fq-m8QW3ybbtwxr7SeV1ubF0ZKPfaB9KHWmP5I__DsaWrpu_-cD3sO5_hqN4mvq_RUevnHus7MI1v-09aDsFo9Mtri7Sqdd-Vxu389mY-b7W_Ak_JYQGlw7PfekIWN-lLchfMnm6nydUsMJzJNhjzrAAQmYBCoVIsm-Q8izkHjQBZhJHMeCQnYcFUgRJzKRgASMkxZnkkI3FCLna-BhGXq8a_2WyWnHkqZFx8AyMLgLU</recordid><startdate>20230607</startdate><enddate>20230607</enddate><creator>Sivaraman, Dileep</creator><creator>Ongwattanakul, Songpol</creator><creator>Suthakorn, Jackrit</creator><creator>Pillai, Branesh M.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-4850-5812</orcidid><orcidid>https://orcid.org/0000-0003-1333-3982</orcidid></search><sort><creationdate>20230607</creationdate><title>Nonlinear Dynamic States' Estimation and Prediction Using Polynomial Predictive Modeling Estimation et prédiction d'états dynamiques non linéaires à l'aide d'une modélisation prédictive polynomiale</title><author>Sivaraman, Dileep ; Ongwattanakul, Songpol ; Suthakorn, Jackrit ; Pillai, Branesh M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i106t-51bfaa3b3af8e880b7c1b911adeaab4e46b14672f08fe6ec630aaa661e90c4643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>DC motors</topic><topic>Disturbance observer (DOB)</topic><topic>Extrapolation</topic><topic>Mathematical models</topic><topic>motion control</topic><topic>Noise measurement</topic><topic>polynomial extrapolation</topic><topic>Predictive models</topic><topic>reaction torque observer (RTOB)</topic><topic>state estimation</topic><topic>Torque</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sivaraman, Dileep</creatorcontrib><creatorcontrib>Ongwattanakul, Songpol</creatorcontrib><creatorcontrib>Suthakorn, Jackrit</creatorcontrib><creatorcontrib>Pillai, Branesh M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>Canadian journal of electrical and computer engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sivaraman, Dileep</au><au>Ongwattanakul, Songpol</au><au>Suthakorn, Jackrit</au><au>Pillai, Branesh M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Dynamic States' Estimation and Prediction Using Polynomial Predictive Modeling Estimation et prédiction d'états dynamiques non linéaires à l'aide d'une modélisation prédictive polynomiale</atitle><jtitle>Canadian journal of electrical and computer engineering</jtitle><stitle>ICJECE</stitle><date>2023-06-07</date><risdate>2023</risdate><spage>1</spage><epage>0</epage><pages>1-0</pages><eissn>2694-1783</eissn><coden>ICJEAP</coden><abstract><![CDATA[In motion-control applications, noise and dynamic nonlinearities influence the performance of control systems and lead to unpredictable disturbances. The dc servo motors used in motion control applications should have precise control methods to achieve the desired responses. Therefore, predicting and compensating for the disturbance are essential for increasing system robustness and achieving high precision and fast reaction. This article introduces the polynomial predictive filtering (PPF) method to estimate the states of a system using polynomial extrapolation of consecutive and evenly spaced sensor data. Acceleration-/torque-based experiments are conducted to validate the effectiveness and viability of the proposed method. The difference between the real-time sensor data and the PPF-based predicted value shows a standard deviation of less than <inline-formula> <tex-math notation="LaTeX">0.15</tex-math> </inline-formula> and <inline-formula> <tex-math notation="LaTeX">1</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">10^{-5}</tex-math> </inline-formula> for the velocity and disturbance torque, respectively.]]></abstract><pub>IEEE</pub><doi>10.1109/ICJECE.2023.3260830</doi><tpages>0</tpages><orcidid>https://orcid.org/0000-0002-4850-5812</orcidid><orcidid>https://orcid.org/0000-0003-1333-3982</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2694-1783 |
ispartof | Canadian journal of electrical and computer engineering, 2023-06, p.1-0 |
issn | 2694-1783 |
language | eng |
recordid | cdi_ieee_primary_10146201 |
source | IEEE Electronic Library (IEL) |
subjects | DC motors Disturbance observer (DOB) Extrapolation Mathematical models motion control Noise measurement polynomial extrapolation Predictive models reaction torque observer (RTOB) state estimation Torque Uncertainty |
title | Nonlinear Dynamic States' Estimation and Prediction Using Polynomial Predictive Modeling Estimation et prédiction d'états dynamiques non linéaires à l'aide d'une modélisation prédictive polynomiale |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A03%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Dynamic%20States'%20Estimation%20and%20Prediction%20Using%20Polynomial%20Predictive%20Modeling%20Estimation%20et%20pr%C3%A9diction%20d'%C3%A9tats%20dynamiques%20non%20lin%C3%A9aires%20%C3%A0%20l'aide%20d'une%20mod%C3%A9lisation%20pr%C3%A9dictive%20polynomiale&rft.jtitle=Canadian%20journal%20of%20electrical%20and%20computer%20engineering&rft.au=Sivaraman,%20Dileep&rft.date=2023-06-07&rft.spage=1&rft.epage=0&rft.pages=1-0&rft.eissn=2694-1783&rft.coden=ICJEAP&rft_id=info:doi/10.1109/ICJECE.2023.3260830&rft_dat=%3Cieee_RIE%3E10146201%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10146201&rfr_iscdi=true |