Nonlinear Dynamic States' Estimation and Prediction Using Polynomial Predictive Modeling Estimation et prédiction d'états dynamiques non linéaires à l'aide d'une modélisation prédictive polynomiale

In motion-control applications, noise and dynamic nonlinearities influence the performance of control systems and lead to unpredictable disturbances. The dc servo motors used in motion control applications should have precise control methods to achieve the desired responses. Therefore, predicting an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of electrical and computer engineering 2023-06, p.1-0
Hauptverfasser: Sivaraman, Dileep, Ongwattanakul, Songpol, Suthakorn, Jackrit, Pillai, Branesh M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In motion-control applications, noise and dynamic nonlinearities influence the performance of control systems and lead to unpredictable disturbances. The dc servo motors used in motion control applications should have precise control methods to achieve the desired responses. Therefore, predicting and compensating for the disturbance are essential for increasing system robustness and achieving high precision and fast reaction. This article introduces the polynomial predictive filtering (PPF) method to estimate the states of a system using polynomial extrapolation of consecutive and evenly spaced sensor data. Acceleration-/torque-based experiments are conducted to validate the effectiveness and viability of the proposed method. The difference between the real-time sensor data and the PPF-based predicted value shows a standard deviation of less than 0.15 and 1 \times 10^{-5} for the velocity and disturbance torque, respectively.
ISSN:2694-1783
DOI:10.1109/ICJECE.2023.3260830