Single-Level Differentiable Contact Simulation

We present a differentiable formulation of rigid-body contact dynamics for objects and robots represented as compositions of convex primitives. Classical physics engines rely on non-differentiable collision detection modules. More recent optimization-based approaches simulating contact between conve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2023-07, Vol.8 (7), p.1-8
Hauptverfasser: Le Cleac'h, Simon, Schwager, Mac, Manchester, Zachary, Sindhwani, Vikas, Florence, Pete, Singh, Sumeet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a differentiable formulation of rigid-body contact dynamics for objects and robots represented as compositions of convex primitives. Classical physics engines rely on non-differentiable collision detection modules. More recent optimization-based approaches simulating contact between convex primitives rely on a bilevel formulation that separates collision detection and contact simulation. These latest approaches are unreliable in realistic contact simulation scenarios because isolating the collision detection problem introduces contact location non-uniqueness. Our approach combines contact simulation and collision detection into a unified single-level optimization problem. This disambiguates the collision detection problem in a physics-informed manner. Our formulation features improved simulation robustness and a reduction in computational complexity when compared to a similar differentiable simulation baseline. We illustrate the contact and collision differentiability on a robotic manipulation task requiring optimization-through-contact. We provide a numerically efficient implementation of our formulation called https://github.com/simon-lc/Silico.jl Silico.jl.
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2023.3268824