Meta-Bandit: Spatial Reuse Adaptation via Meta-Learning in Distributed Wi-Fi 802.11ax

IEEE 802.11ax introduces several amendments to previous standards with a special interest in spatial reuse (SR) to respond to dense user scenarios with high demanding services. In dynamic scenarios with more than one Access Point, the adjustment of joint Transmission Power (TP) and Clear Channel Ass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE networking letters 2023-12, Vol.5 (4), p.1-1
Hauptverfasser: Iturria-Rivera, Pedro Enrique, Chenier, Marcel, Herscovici, Bernard, Kantarci, Burak, Erol-Kantarci, Melike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:IEEE 802.11ax introduces several amendments to previous standards with a special interest in spatial reuse (SR) to respond to dense user scenarios with high demanding services. In dynamic scenarios with more than one Access Point, the adjustment of joint Transmission Power (TP) and Clear Channel Assessment (CCA) threshold remains a challenge. With the aim of mitigating Quality of Service (QoS) degradation, we introduce a solution that builds on meta-learning and multi-arm bandits. Simulation results show that the proposed solution can adapt with an average of 1250 fewer environment steps and 72% average improvement in terms of fairness and starvation than a transfer learning baseline.
ISSN:2576-3156
2576-3156
DOI:10.1109/LNET.2023.3268648