CarDD: A New Dataset for Vision-Based Car Damage Detection

Automatic car damage detection has attracted significant attention in the car insurance business. However, due to the lack of high-quality and publicly available datasets, we can hardly learn a feasible model for car damage detection. To this end, we contribute with Car Damage Detection (CarDD), the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2023-07, Vol.24 (7), p.1-13
Hauptverfasser: Wang, Xinkuang, Li, Wenjing, Wu, Zhongcheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Automatic car damage detection has attracted significant attention in the car insurance business. However, due to the lack of high-quality and publicly available datasets, we can hardly learn a feasible model for car damage detection. To this end, we contribute with Car Damage Detection (CarDD), the first public large-scale dataset designed for vision-based car damage detection and segmentation. Our CarDD contains 4,000 high-resolution car damage images with over 9,000 well-annotated instances of six damage categories. We detail the image collection, selection, and annotation processes, and present a statistical dataset analysis. Furthermore, we conduct extensive experiments on CarDD with state-of-the-art deep methods for different tasks and provide comprehensive analyses to highlight the specialty of car damage detection. CarDD dataset and the source code are available at https://cardd-ustc.github.io.
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2023.3258480