HAW: Hardware-Aware Point Selection for Efficient Winograd Convolution

Winograd's minimal filtering algorithm effectively reduces the multiplication arithmetic complexity of Convolutional Neural Networks. However, Winograd convolutions in current implementations are limited to small feature tiles for two reasons:the numerical error and the overhead of the transfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2023-01, Vol.30, p.1-5
Hauptverfasser: Li, Chaoran, Jiang, Penglong, Zhou, Hui, Wang, Xiaofeng, Zhao, Xiongbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Winograd's minimal filtering algorithm effectively reduces the multiplication arithmetic complexity of Convolutional Neural Networks. However, Winograd convolutions in current implementations are limited to small feature tiles for two reasons:the numerical error and the overhead of the transformations. The performance of Winograd convolutions is determined by the points used to construct transformation matrices, which raises a great challenge to find the optimal points: it requires exploring the vast design space trading off between numerical accuracy and hardware resource consumption. In this letter, we introduce the Hardware-Aware point selection framework for efficient Winograd convolution, which leverages reinforcement learning to determine the point selection policy. We design three reward functions to optimize numerical accuracy and circuit area. Experiments demonstrate thatWinograd convolutions using our policies outperform state-of-the-art methods in circuit area and accuracy.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2023.3258863