Group Tracking for Video Monitoring Systems: A Spatio-temporal Query Processing Approach

Recently, many video monitoring systems utilize deep learning technologies to recognize locations and trajectories of people in video data. In video monitoring systems, a fast discovery of human groups is an important task for several applications, for example, crime surveillance, contact tracing, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Yoon, Hyunsik, Choi, Dalsu, Chung, Yon Dohn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, many video monitoring systems utilize deep learning technologies to recognize locations and trajectories of people in video data. In video monitoring systems, a fast discovery of human groups is an important task for several applications, for example, crime surveillance, contact tracing, and customer behavior analysis. To tackle the demand, we propose a group tracking method. First, we propose a spatial proximity definition and define a novel query type, a group tracking query that considers characteristics of video data. A group tracking query retrieves the groups that travel for more than a certain amount of video frame within a certain distance. We propose an efficient query processing method that exploits the spatio-temporal characteristics of groups. Through extensive experiments using real-world datasets, we verify the efficiency and effectiveness of our query definition and query processing method.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2023.3249190