Prediction of Protein-Protein Interactions Using Vision Transformer and Language Model

The knowledge of protein-protein interaction (PPI) helps us to understand proteins' functions, the causes and growth of several diseases, and can aid in designing new drugs. The majority of existing PPI research has relied mainly on sequence-based approaches. With the availability of multi-omic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on computational biology and bioinformatics 2023-09, Vol.20 (5), p.3215-3225
Hauptverfasser: Jha, Kanchan, Saha, Sriparna, Karmakar, Sourav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The knowledge of protein-protein interaction (PPI) helps us to understand proteins' functions, the causes and growth of several diseases, and can aid in designing new drugs. The majority of existing PPI research has relied mainly on sequence-based approaches. With the availability of multi-omics datasets (sequence, 3D structure) and advancements in deep learning techniques, it is feasible to develop a deep multi-modal framework that fuses the features learned from different sources of information to predict PPI. In this work, we propose a multi-modal approach utilizing protein sequence and 3D structure. To extract features from the 3D structure of proteins, we use a pre-trained vision transformer model that has been fine-tuned on the structural representation of proteins. The protein sequence is encoded into a feature vector using a pre-trained language model. The feature vectors extracted from the two modalities are fused and then fed to the neural network classifier to predict the protein interactions. To showcase the effectiveness of the proposed methodology, we conduct experiments on two popular PPI datasets, namely, the human dataset and the S. cerevisiae dataset. Our approach outperforms the existing methodologies to predict PPI, including multi-modal approaches. We also evaluate the contributions of each modality by designing uni-modal baselines. We perform experiments with three modalities as well, having gene ontology as the third modality.
ISSN:1545-5963
1557-9964
DOI:10.1109/TCBB.2023.3248797