A Quantitative Logarithmic Transformation-Based Intrusion Detection System

Intrusion detection systems (IDS) play a vital role in protecting networks from malicious attacks. Modern IDS use machine-learning or deep-learning models to deal with the diversity of attacks that malicious users may employ. However, effective machine-learning methods incur a considerable cost in b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023, Vol.11, p.20351-20364
Hauptverfasser: Lan, Blue, Lo, Ta-Chun, Wei, Rico, Tang, Heng-Yu, Shieh, Ce-Kuen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intrusion detection systems (IDS) play a vital role in protecting networks from malicious attacks. Modern IDS use machine-learning or deep-learning models to deal with the diversity of attacks that malicious users may employ. However, effective machine-learning methods incur a considerable cost in both the pretraining stage and the online detection process itself. Accordingly, this study proposes a quantitative logarithmic transformation-based intrusion detection system (QLT-IDS) that uses a straightforward statistical approach to analyze network behavior. Compared with machine-learning or deep-learning-based IDS methods, the proposed system requires neither a time-consuming and expensive data collection and training process, nor a GPU-included device to achieve a real-time detection performance. Furthermore, the system can deal not only with North-South attacks, but also East-West attacks, which pose a significant risk in real-world operations. The effectiveness of the proposed system is evaluated for both real-world campus network traffic and simulated traffic. The results confirm that QLT-IDS is able to detect a wide range of malicious attacks with a high precision, even under high down-sampling rate of the NetFlow records.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2023.3248261