Deep Neural Network-Based Approximate Optimal Tracking for Unknown Nonlinear Systems

The infinite horizon optimal tracking problem is solved for a deterministic, control-affine, unknown nonlinear dynamical system. A deep neural network (DNN) is updated in real time to approximate the unknown nonlinear system dynamics. The developed framework uses a multitimescale concurrent learning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2023-05, Vol.68 (5), p.3171-3177
Hauptverfasser: Greene, Max L., Bell, Zachary I., Nivison, Scott, Dixon, Warren E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The infinite horizon optimal tracking problem is solved for a deterministic, control-affine, unknown nonlinear dynamical system. A deep neural network (DNN) is updated in real time to approximate the unknown nonlinear system dynamics. The developed framework uses a multitimescale concurrent learning-based weight update policy, with which the output layer DNN weights are updated in real time, but the internal DNN features are updated discretely and at a slower timescale (i.e., with batch-like updates). The design of the output layer weight update policy is motivated by a Lyapunov-based analysis, and the inner features are updated according to existing DNN optimization algorithms. Simulation results demonstrate the efficacy of the developed technique and compare its performance to existing techniques.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2023.3246761