Deep Neural Network-Based Approximate Optimal Tracking for Unknown Nonlinear Systems
The infinite horizon optimal tracking problem is solved for a deterministic, control-affine, unknown nonlinear dynamical system. A deep neural network (DNN) is updated in real time to approximate the unknown nonlinear system dynamics. The developed framework uses a multitimescale concurrent learning...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2023-05, Vol.68 (5), p.3171-3177 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The infinite horizon optimal tracking problem is solved for a deterministic, control-affine, unknown nonlinear dynamical system. A deep neural network (DNN) is updated in real time to approximate the unknown nonlinear system dynamics. The developed framework uses a multitimescale concurrent learning-based weight update policy, with which the output layer DNN weights are updated in real time, but the internal DNN features are updated discretely and at a slower timescale (i.e., with batch-like updates). The design of the output layer weight update policy is motivated by a Lyapunov-based analysis, and the inner features are updated according to existing DNN optimization algorithms. Simulation results demonstrate the efficacy of the developed technique and compare its performance to existing techniques. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2023.3246761 |