A Deep Reinforcement Learning-based Intelligent Grid-Forming Inverter for Inertia Synthesis by Impedance Emulation

In this letter, impedance emulation is exploited for synthesizing inertia in autonomous microgrids. An intelligent grid-forming inverter (GFI) is proposed that facilitates sufficient degrees of freedom for adaptive impedance shaping. The latter adaptively changes the effective bandwidth of the inver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2023-05, Vol.38 (3), p.1-4
Hauptverfasser: Eskandari, Mohsen, Savkin, Andrey V., Fletcher, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this letter, impedance emulation is exploited for synthesizing inertia in autonomous microgrids. An intelligent grid-forming inverter (GFI) is proposed that facilitates sufficient degrees of freedom for adaptive impedance shaping. The latter adaptively changes the effective bandwidth of the inverter's voltage controller, in response to disturbances for inertia synthesis. Deep reinforcement learning is utilized to tackle the lack of explicit quantitative relation between impedance shaping and inertia. Simulation results prove the effectiveness of the method.
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2023.3242469