Curve fitting algorithm of functional radiation-response data using Bayesian hierarchical Gaussian process regression model
We present a nonparametric Bayesian hierarchical (NBH) model and develop a variational approximation (VA) algorithm for the curve fitting of the functional radiation response data. The NBH model is based on a Bayesian hierarchical (BH) model with a Gaussian-Inverse Wishart process (G-IWP) prior, whi...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a nonparametric Bayesian hierarchical (NBH) model and develop a variational approximation (VA) algorithm for the curve fitting of the functional radiation response data. The NBH model is based on a Bayesian hierarchical (BH) model with a Gaussian-Inverse Wishart process (G-IWP) prior, which simultaneously smooths multiple functional observations and estimates mean-covariance functions. We use the automatic differentiation variational inference (ADVI) algorithm with a Gaussian distribution as the variational distribution for approximating the posterior distribution of parameters of interest, which is applicable to a wide class of probabilistic models and can also be implemented in Stan (a probabilistic programming system). Using the NBH model and the Gaussian ADVI algorithm, we fit a dataset for the semiconductor obtained from the radiation response map (RRM) of South Korea. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2023.3237395 |