Curve fitting algorithm of functional radiation-response data using Bayesian hierarchical Gaussian process regression model

We present a nonparametric Bayesian hierarchical (NBH) model and develop a variational approximation (VA) algorithm for the curve fitting of the functional radiation response data. The NBH model is based on a Bayesian hierarchical (BH) model with a Gaussian-Inverse Wishart process (G-IWP) prior, whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Jung, Kwang-Woo, Kim, Jaeoh, Jung, Ho-Jin, Seo, Seung-Won, Hong, Ji-Man, Bai, Hyoung-Woo, Jo, Seongil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a nonparametric Bayesian hierarchical (NBH) model and develop a variational approximation (VA) algorithm for the curve fitting of the functional radiation response data. The NBH model is based on a Bayesian hierarchical (BH) model with a Gaussian-Inverse Wishart process (G-IWP) prior, which simultaneously smooths multiple functional observations and estimates mean-covariance functions. We use the automatic differentiation variational inference (ADVI) algorithm with a Gaussian distribution as the variational distribution for approximating the posterior distribution of parameters of interest, which is applicable to a wide class of probabilistic models and can also be implemented in Stan (a probabilistic programming system). Using the NBH model and the Gaussian ADVI algorithm, we fit a dataset for the semiconductor obtained from the radiation response map (RRM) of South Korea.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2023.3237395