Design, synthesis and biological evaluation of 1,3-diaryltriazene-substituted sulfonamides as antioxidant, acetylcholinesterase and butyrylcholinesterase inhibitors
1,3-diaryltriazenes are one of the most useful and important linkers for many pharmaceutical applications. Therefore, in the current work, a series of 1,3-diaryltriazene sulfonamides 4(a-k) were synthesized by reacting diazonium salt of sulfanylamide and substituted aromatic amine derivatives 3(a-k)...
Gespeichert in:
Veröffentlicht in: | Journal of the Turkish Chemical Society, Section A, Chemistry Section A, Chemistry, 2019-01, Vol.6 (1), p.63-70 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 1,3-diaryltriazenes are one of the most useful and important linkers for many pharmaceutical applications. Therefore, in the current work, a series of 1,3-diaryltriazene sulfonamides 4(a-k) were synthesized by reacting diazonium salt of sulfanylamide and substituted aromatic amine derivatives 3(a-k). The obtained compounds were investigated for antioxidant properties by using different methods such as a DPPH radical scavenging assay, ABTS radical decolarization, cupric reducing antioxidant capacity (CUPRAC) and metal chelating methods. The cholinesterase inhibition activities (acetylcholinesterase and butyrylcholinesterase) of synthesized compounds were also tested. In general, compounds showed weak antioxidant activity, except compounds 4d (IC50 =114.89 μM for DPPH activity), 4i (IC50 =25.31 μM for ABTS activity), 4a (IC50 = 86.33 μM for metal chelating activity), and 4k (absorbance value 1.229 μM for CUPRAC). Some of the compounds showed great % inhibition against both acetylcholinesterase and butyrylcholinesterase with % inhibition values ranging from 11.54 to 93.67 and 62.24 to 98.47, respectively. |
---|---|
ISSN: | 2149-0120 |
DOI: | 10.18596/jotcsa.516444 |