Wavelet estimation of semiparametric errors in variables model

Most of the work on wavelet estimation when the variables are measured with errors have centered around nonparametric approaches which cause curse of dimensionality. In this paper it is aimed to avoid this complexity using wavelet semiparametric errors in variables regression model. Using theoretica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications Series A1 Mathematics & Statistics 2019-01, Vol.68 (1), p.595-601
1. Verfasser: Yalaz, Seçil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most of the work on wavelet estimation when the variables are measured with errors have centered around nonparametric approaches which cause curse of dimensionality. In this paper it is aimed to avoid this complexity using wavelet semiparametric errors in variables regression model. Using theoretical arguments for nonparametric wavelet estimation a wavelet approach is represented to estimate partially linear errors in variables model which is a semiparametric model when explanatory variable of nonparametric part has measurement error. Assuming that the measurement error has a known distribution we derive an estimator of the linear parts' parameter. In simulation study derived method is compared with no measurement error case.
ISSN:1303-5991
DOI:10.31801/cfsuasmas.439625